Смекни!
smekni.com

Исследование движения механической системы с двумя степенями свободы (стр. 3 из 4)

Основному уравнению динамики (4.1) можно придать вид уравнения статики:

(4.2)

Здесь

– сила инерции точки механической системы.

Рисунок 4.1. Определение реакций в опорах вращающегося тела


Для заданной механической системы уравнение статики (4.2) имеет вид:

(4.3)

Для определения реакции шарнира нам необходимо и достаточно взять за координатные оси – неподвижные оси

и
, и определить составляющие реакции шарнира на эти оси:

(4.4)

Отсюда:

Подставив значения сил, получим:

(4.5)

Теперь спроецируем (4.2) на неподвижную ось

:

(4.6)

Отсюда:

Подставив известные значения сил, получим:


(4.7)

Полную реакцию в шарнире

можно найти по формуле:
, где
и
определяются выражениями (4.5) и (4.7); график её зависимости от времени приведён в приложении к курсовой работе (рис. 4).

5. Исследование движения механической системы с двумя степенями свободы с помощью уравнений Лагранжа II рода

5.1 Составление уравнений движения системы методом Лагранжа

Уравнения второго рода являются одним из наиболее удобных приёмов составления уравнений движения механических систем. Они имеют следующий вид:

(5.1.1)

Здесь

– кинетическая энергия системы;
,
,
, – обобщённые координаты, скорости и силы соответственно;
– число степеней свободы.

Уравнения (5.1.1) образуют систему

уравнений второго порядка относительно
функций
, а порядок данной системы равен
. Форма уравнений Лагранжа не зависит от выбора обобщённых координат
. В связи с этим говорят, что уравнения Лагранжа второго рода обладают свойством инвариантности.

Как видно из (5.1.1), для получения уравнений Лагранжа необходимо найти соответствующие производные от кинетической энергии системы и определить обобщённые силы.

Определим кинетическую энергию системы. Она будет складываться из кинетических энергий треугольника и шарика:

.

Подставив значение

из (3.1.5), получим:

(5.1.2)

Кинетическая энергия шарика определяется его массой и относительной и переносной скоростями:

С учётом известных значений скоростей, получим:

(5.1.3)

Кинетическая энергия системы равна:

(5.1.4)

Найдём производные от кинетической энергии согласно (5.1.1):

(5.1.5)
(5.1.6)

(5.1.7)
(5.1.8)

Рисунок 5.1.1. Определение кинетической и потенциальной энергий системы

Теперь, исходя из (5.1.1), нужно определить обобщённые силы. Данная механическая система является консервативной, мы можем определить обобщённые силы через потенциальную энергию по формуле:

(5.1.9)

Найдём потенциальную энергию. Она будет складываться из работ консервативных сил по перемещению тела из нулевого положения:

. За нулевой уровень потенциальной энергии выберем начальный момент времени, при
:

– энергия положения шарика;

– энергия положения прямоугольника;

– потенциальная энергия силы упругости;

Потенциальная энергия системы равна:


(5.1.10)

Найдём обобщённые силы:

(5.1.11)

(5.1.12)

Теперь можем записать систему уравнений Лагранжа II рода:

(5.1.13)

(5.1.14)

5.2 Получение дифференциального уравнение относительного движения материальной точки

(5.1.13) и (5.1.14) – это система уравнений Лагранжа II рода; первое из них представляет собой дифференциальное уравнение относительного движения. При сравнении (5.1.13) с уравнением относительного движения (2.7) видно, что уравнения тождественны:

(2.7)

(5.1.13)

5.3 Определение закона изменения внешнего момента, обеспечивающего постоянство угловой скорости

(5.1.14) – это уравнение уравнения движения твердого тела без ограничения на закон изменения угловой скорости вращения. Определим величину внешнего момента, обеспечивающего равномерное вращение:

(5.1.14)

При действии внешнего момента, обеспечивающего равномерное вращение, уравнение (5.1.14) примет вид:

(5.3.1)

Отсюда:

(5.2.2)

Сравним с полученным ранее значением:

(3.2.2)

Итак, два разных способа определения внешнего момента дали один результат.


6. Определение положений равновесия механической системы и исследование их устойчивости

Важным случаем движения механических систем является их колебательное движение. Колебания – это повторяющиеся движения механической системы относительно некоторого ее положения, происходящие более или менее регулярно во времени. В курсовой работе рассматривается колебательное движение механической системы относительно положения равновесия (относительного или абсолютного).