Смекни!
smekni.com

Исследование движения механической системы с двумя степенями свободы (стр. 4 из 4)

Механическая система может совершать колебания в течение достаточно длительного промежутка времени только вблизи положения устойчивого равновесия. Поэтому перед тем, как составить уравнения колебательного движения, надо найти положения равновесия и исследовать их устойчивость.

Согласно основному уравнению статики, для того чтобы механическая система находилась в равновесии, необходимо и достаточно, чтобы в этой системе были равны нулю все обобщенные силы:

(6.1)

– обобщённые силы;
– число обобщённых координат в механической системе.

В нашем случае механическая система находится в потенциальном силовом поле; из уравнений (6.1) получаем следующие условия равновесия:

(6.2)

Следовательно, в положении равновесия потенциальная энергия имеет экстремальное значение. Не всякое равновесие, определяемое вышеприведенными формулами, может быть реализовано практически. В зависимости от поведения системы при отклонении от положения равновесия говорят об устойчивости или неустойчивости данного положения. Достаточные условия устойчивости положений равновесия для консервативных систем определяются теоремой Лагранжа – Дирихле: «Положение равновесия консервативной механической системы устойчиво, если в нём потенциальная энергия системы имеет изолированный минимум».

Определим положения равновесия для заданной механической системы, используя ранее найденные обобщённые силы (5.1.11) и (5.1.12) из системы уравнений:

(6.4)

Решение системы средствами MathCAD приведено в приложении Б к курсовой работе.

Для нашей механической системы имеем:

Первое положение равновесия:

,
.

Второе положение равновесия:

,
.

Используя теорему Лагранжа – Дирихле определяем, что первое положение равновесия является не устойчивым, а второе – устойчивым.

Рисунок 6.1. Положения равновесия механической системы


Найдем вторые производные от потенциальной энергии по обобщенным координатам:

(6.5)

Для исследования устойчивости положения равновесия необходимо исследовать на знакоопределенность матрицу жесткости, составленную из значений выражения (6.5) в этом положении равновесия.

1)

Положение равновесия не устойчивое

2)

Положение равновесия устойчивое

Заключение

В данной курсовой работе была исследована механическая система с двумя степенями свободы. В результате были достигнуты изначально поставленные цели, а именно:

- получен закон относительного движения материальной точки;

- составлено уравнение движения твердого тела с помощью теоремы об изменении кинетического момента, определено значение внешнего момента, обеспечивающего равномерное вращение конструкции;

- найдены реакции в опорах вращающегося тела;

- проведено исследование движения механической системы с помощью уравнений Лагранжа II рода, в результате которого получены уравнение относительного движения материальной точки и закон изменения внешнего момента, обеспечивающего постоянство угловой скорости;

- определены положения равновесия механической системы и исследована их устойчивость;

В приложениях к курсовой работе приведены результаты численного интегрирования, а так же графики зависимостей определяемых величин.


Список использованных источников

1. Бутенин Н.В., Лунц Я.Л. и др.: Курс теоретической механики, том 1 и том 2, Москва, «Наука», 1970.

2. Яблонский А.А., Норейко С.С.: Курс теории колебаний, Москва, Высшая школа, 1966.

3. Динамика точки и механической системы: Учебное пособие для курсового проектирования / Авраменко А.А., Архипов В.В., Асланов В.С., Тимбай И.А.; Под ред. проф. В.С. Асланова. – Самарский государственный аэрокосмический университет, Самара, 2001 – 84 с.