Смекни!
smekni.com

Закон кубов Дебая (стр. 1 из 2)

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РЕСПУБЛИКИ ТАТАРСТАН

АЛЬМЕТЬЕВСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЯНОЙ ИНСТИТУТ

Кафедра физики

Реферат

на тему:«Закон кубов Дебая»

Выполнил студентгруппы 18-13В Гонтарь И. В. Преподаватель: Мухетдинова З. З.

Альметьевск 2010

Содержание:

1. Энергия кристаллической решетки …………………………… 3

2. Модель Эйнштейна …………………………………………….. 6

3. Модель Дебая ………………………………………………….. 7

4. Закон кубов Дебая ……………………………………………… 8

5. Достижения Дебая ……………………………………………… 9

6. Список литературы …………………………………………….. 12

Энергия кристаллической решетки

Особенность твердого тела - наличие дальнего и ближнего поряд­ков. В иде­аль­ном кристалле частицы занимают определенные положения и не надо учи­тывать N! при статистических расчетах.

Энергия кристаллической решетки одноатомного кристалла состоит из двух ос­новных вкладов: E = Uo + Eкол. Колеблются атомы в решетке. У многоатомных частиц, образующих кристалл, надо учитывать и внутренние степени свободы: коле­ба­ния и вращения. Если не учитывать ангармоничность колебаний атомов, дающую зависимость Uo от температуры (изменение равновесных положений атомов), Uo можно приравнять потенциальной энергии кристалла и не зависящей от Т. При Т = 0 энергия кристаллической решетки, т.е. энергия для удаления частиц кристалла на бес­­­­конечное расстояние будет равна Екр = - Eо = - ( Uo + Eо,кол).

Здесь Eо,кол - энер­гия нулевых колебаний. Обычно эта величина имеет поря­док 10 кДж/ моль и много меньше Uo. Считают Екр = - Uo. (Метод наибольшего слагаемого). Екр в ионных и молеку­лярных кристаллах до 1000 кДж/моль, в молеку­ляр­ных и в кристаллах с водород­ны­ми связями: до 20 кДж/моль (СР4 - 10, Н2О - 50). Величины опре­де­ля­ют из опыта или считают на основе какой-либо модели: ионное взаимодействие по кулону, ван-дер-ваальсовы силы по потенциалу Сазерленда.

Рассмотрим ионный кристалл NaCl, имеющий гранецентрированную кубичес­кую решет­ку: в решетке у каждого иона 6 соседей противоположного знака на рас­сто­янии R, в следующем втором слое 12 соседей того же знака на расстоянии 21/2 R, 3-ий слой: 8 ионов на расстоянии 31/2R, 4-ый слой: 6 ионов на расстоянии 2R и т.д.

Потенциальная энергия кристалла из 2N ионов будет U = Nu, где u - энергия энергия взаимодействия иона с соседями. Энергия взаимо­дей­ствия ионов состоит из двух чле­нов: короткодействующего отталкивания за счет ва­лентных сил (1-й член) и притяже­ния или отталкивания зарядов:

знак + для отталкивание одинако­вых, - притяжения разных ионов. e -заряд. Введем величину приведенного расстояния рij = rij / R, где rij - рас­стояние между ионами, R - параметр решетки.

Энергия взаи­мо­­действия иона со всеми сосе­дями

где

постоянная Маделунга = 6/1 - 12/21/2 + 8/31/2 - 6/2 + .... Здесь - для оди­на­ковых по знаку заряда ионов, + для разных. Для NaCl a = 1,747558... An = S 1/ pijn в первом члене. Расстояние Ro (половина ребра куба в данном случае) отвечает ми­ни­­муму по­тен­циальной энергии при Т = 0 и его мож­но определить из данных крис­тал­лографии и зная потенциал отталкивания. Очевидно, что
и тогда

От­­сюда находим An и энергия

или
.

n - параметр по­тенциала отталкивания и обыч­­но ³ 10, т.е. основной вклад вносит кулоновское взаимодействие (считаем при этом, что R заметно не зависит от Т), а отталкива­ние дает менее 10%.

Для NaCl кулоновское взаимодействие 862, отталкивание 96 кДж/моль (n = 9). Для молекулярных кристаллов можно считать по потенциалу 6-12 и энергия будет равна

z1 - число атомов в 1-ой коорди­на­ци­онной сфере, R1 - ра­диус первой координационной сферы, b - параметр потен­циала.

Для неионных кристаллов надо учитывать колебательную составляющую энер­­гии. Поступательные и вращательные движения при абсолютном нуле от­сут­ст­ву­ют. Остается колебательная составляющая энергии. Колебаний 3N - 6, но посту­пате­льные и вращательные относятся к кристаллу в целом. Грубо можно счи­тать 3N, т.к. N (велико, число частиц в кристалле). Тогда все 3N степеней свободы крис­тал­ла из N час­тиц колебательные. В принципе легко посчитать сумму по состояниям и тер­моди­на­ми­ческие функции. Но надо знать спектр частот колебаний кристалла. Дело в том, что смещение частицы вызывает смещение других и осцилляторы связа­ны. Полная сумма по состояниям колебательного движения будет определена:

.

Т.к. это кристалл, то на N ! делить не надо. Средняя энергия равна производной lnZ по Т при постоянном V, умноженной на kT2. Отсюда энергия решетки равна сумме вкладов потенциаль­ной и колебательной энергии,

а энтропия S = E/ T + k ln(Z).

Для расчета используют две основные модели.

Модель Эйнштейна

Все частоты считаются одинаковыми: совокупность одно­мер­­­ных гармонических осциллятров. Сумма по состояниям трехмерного осциллято­ра состоит из 3 одинаковых членов q = [ 2sh(hn/ 2kT)]-3. Для N частиц будет 3N сом­но­­жителей. Т.е. энергия

При высоких Т, разлагая экспоненту в ряд, предел sh(hn/ 2kT) = hn/ 2kT и

Энтропия колебательного движения

Теплоемкость кристаллов:

У ОП ошибка. Отсюда при больших Т >> qЭ = hn/ k предел Cv ® 3Nk: За­кон Дюлонга-Птидля одноатомных кристаллов. И

(Экспонента быстро стремится к 0).

В классическом приближении Екол без нулевых колебаний равна 3NkT и вклад ко­лебаний в теплоем­кость 3Nk = 3R. Расчет по Эйнштейну: нижняя кривая, более за­метно отклоня­юща­яся от опытных данных.

Модель Эйнштейна дает уравнение состояния твердого тела: (по Мелвин-Хьюзу)

uo = - q возгонки, m, n - опытные параметры, так для ксе­нона m = 6, n = 11, ao - меж­атомное расстояние при Т = 0. Т.е. pV/ RT = f(n, ao, n, m).

Но вблизи Т = 0 предположения Эйнштейна об одинаковых частотах не рабо­тает. Осцилляторы могут различаться силой взаимодействия и частотой. Опыт при низких температурах показывает кубическую зависимость от температуры.

Модель Дебая

Дебай предложил модель существования непрерывного спектра час­­тот (строго для низких частот, для тепловых колебаний - фононов) вплоть до не­кой мак­си­мальной. Функция распределения по частотам гармони­чес­ких осци­ллято­ров имеет вид

, где cl, ct - скорости распростра­нения про­дольных и поперечных волн колебаний. При частотах выше максимальной g = 0.

Площади под двумя кривыми должны быть одинаковыми. Реально существует неко­торый спектр частот, кристалл неизотропен (обычно этим пренебрегают и полагают скорости распространения волн по направлениям одинаковыми). Может быть, что мак­­­­­­симальная частота Дебая выше реально существующих, что следует из условия равенства площадей. Значение максимальной частоты определяется по условию, что полное число коле­баний равно 3N (при этом пренебрегаем дискретностью энер­гии)

и
, с - скорость движения волны. Полагаем, что скоро­сти cl и ct равны. Характеристическая температура Дебая QD = hnм / k.

Введем х = hn/ kT. Средняя энер­­гия колебаний тогда при максимальном

хм = Q D/ T

Второй член под интегралом даст Е нулевых колебаний Ео = (9/8)NkQD и тогда ко­ле­бательная энергия кристалла:

Так как Uo и Еo не зависят от Т, то вклад в теплоемкость даст 2-й член в выражении для энергии.

Вве­дем функцию Дебая

При высоких Т получим очевид­ное D(x) ® 1. Диф­­фе­рен­­­­­цируя по х, получим

.