Смекни!
smekni.com

Формирование и развитие основных понятий геометрической оптики в курсе физики средней школы (стр. 3 из 8)

Таким образом, световой луч – это абстрактное математическое понятие, а геометрическая оптика является приближенным предельным случаем, в который переходит волновая оптика, когда длина световой волны стремится к нулю.

Чтобы показать это, среду, в которой распространяется свет надо считать прозрачной и однородной. Предполагая сначала, что она изотропна, нужно исключить из уравнений Максвелла (1.1) и (1.2) вектор Н.

(1.1)
(1.2)

где Н – напряженность магнитного поля, Е – напряженность электрического поля, В – магнитная индукция, D – электрическое смещение.

Для того, чтобы исключить вектор Н, следует уравнение (1.1) продифференцировать по t, а от обеих частей уравнения (1.2) взять операцию rot, воспользовавшись при этом векторной формулой

rot rot E=grad div E-DE (1.3)

где D – оператор Лапласа в прямоугольной системе координат, т. е.

(1.4)

Из полученных соотношений легко исключить Н. В результате получиться:

(1.5)

где V определяется выражением

(1.6)

Уравнение (1.5) называется волновым. Такому же уравнению удовлетворяет вектор Н [3].

Для неоднородных сред уравнение (1.5) усложняется. Но если интересоваться только интенсивностью волн, отвлекаясь от их поляризации, то оказывается, что в предельном случае геометрической оптики уравнение (1.5) приводит к правильным результатам. Поэтому даже в случае неоднородных сред предельный переход к геометрической оптике можно выполнить на основе волнового уравнения

(1.7)

в котором Е означает длину вектора Е, а скорость V считается известной функцией координат. Результаты такого метода применимы не только к световым, но и ко всем другим волнам, например акустическим.

Условием применимости геометрической оптики является малость изменения амплитуды волны и ее первых пространственных производных на протяжении длины волны. Систему уравнений геометрической оптики составляют уравнения

(gradФ)2=n2, (1.8)

aDФ+2grada gradФ=0, (1.9)

где a – амплитуда, Ф – эйконал, а уравнение (1.8) – уравнение эйконала, которое определяет скорость распространения волнового фронта в направлении нормали.

В том случае, если условие применимости не соблюдается, могут возникать заметные отступления от геометрической оптики. Это происходит, например, в следующих случаях: 1) на границе геометрической тени; 2) вблизи фокуса, т. е. геометрической точки схождения лучей; 3) при распространении света в среде с резко меняющимися показателем преломления (в мутной среде); 4) при распространении света в сильно поглощающих средах (например, металлах)

§1.3 Основные понятия и законы геометрической оптики и их развитие в курсе физики средней школы.

1. Излучение в пространстве или в прозрачной однородной среде можно характеризовать интенсивностью, спектральным составом и поляризацией. Конечной энергией могут обладать лучи, направления которых заполняют конечные телесные углы, величина этих углов может быть очень малой.

В поле излучения находится произвольная малая площадка dS. Линейные размеры этой площадки должны быть велики по сравнению с длинами волн излучения, чтобы к излучению можно было применять понятия и законы геометрической оптики. Через площадку dS проходят лучи, заполняющие некоторый телесный угол W. Энергия переносимая этими лучами в единицу времени, называется лучистым потокомФ, проходящим через площадку dS в телесный угол W. Если телесный угол dW бесконечно мал, а площадка dS перпендикулярна к его оси, то лучистый поток можно представить в виде:

dФ=IdSdW (1.10)

Величина I – лучистый поток, отнесенный к единичной площадке, перпендикулярной к излучению, и к единице телесного угла. Она называется интенсивностью лучистого потока или лучистым излучением в направлении оси телесного угла dW [3].

2. Объемной плотностью лучистой энергии называется энергия, содержащаяся в единице объема пространства Vлучей с телесным углом dW при вершине.

Полная плотность лучистой энергии U определяется выражением:

U=4pI/V (1.11)

где V – скорость распространения излучения.


Рис. 1.3.1 Малый конусV

3. Величины Ф, I, U можно подвергнуть спектральному разложению по частотам или длинам волн. Каждое излучение, обладающее конечной энергией, занимает конечный интервал частот или длин волн.

Все приведенные энергетические характеристики излучения измеряются в механических единицах, например по произвольному или тепловому действию. Так, в системе СИ лучистый поток измеряется в ваттах (Вт), интенсивность излучения – в ваттах на стерадиан-квадратный метр (Вт/ср×м2), объемная плотность лучистой энергии – в джоулях на кубический метр (Дж/м3). Такие единицы применяются в теории теплового излучения, но в видимой области спектра характеризуют излучение по зрительному или световому ощущению, оцениваемому по действию света на глаз человека. Соответствующие характеристики и их единицы называются световыми, или фотометрическими.

5. Силой света источника в заданном направлении называют световой поток посылаемый им в этом направлении и отнесенный к единице телесного угла.

Единицей силы света источника в системе СИ служит кандела – это основная фотометрическая единица. Кандела (кд) – это сила света, излучаемого в направлении нормали с 1/60 см2 излучающей поверхности указанного светового эталона.

Единица светового потока – люмен (лм) – это световой поток, посылаемый источником в 1 кд внутрь телесного угла в 1 стерадиан.

Интенсивность света обратно пропорциональна квадрату расстояния до точечного источника

I=Z/r2, (1.12)

где Z– сила света источника.

6. Световой поток, приходящийся на единицу площади освещаемой поверхности, называется освещенностьюЕ этой поверхности.

Пусть источник точечный, а лучи падают под углом q к нормали к освещаемой поверхности. Тогда

dФ=ZdW=ZdScosq/r2

Разделив на площадь поверхности dS, получим :

, (1.13)

Таким образом, освещенность, создаваемая точечным источником в отсутствие поглощения, обратно пропорциональна квадрату расстояния до него и прямо пропорциональна косинусу угла между направлением падающих лучей и нормалью к освещаемой поверхности.

Единица освещенности – люкс (лк) – освещенность, создаваемая световым потоком в 1 люмен, равномерно распределенным по площади 1 м2 [3].

7. Для протяженных источников вводится понятие яркостиВ. Яркость поверхности – световой поток dФ, исходящий из площадки dS в рассматриваемом направлении, отнесенный у единице телесного угла и к единице видимой величины площадки, т. е. dScosq:

(1.14)

где dZ=dФ/dW – сила света площадки dS (рис 1.3.2). Буква В снабжена индексом q, так как яркость зависит от угла q, под которым рассматривается площадка dS.


Рис. 1.3.2

Единицей яркости является кандела на квадратный метр (кд/м2). Это яркость плоской поверхности, сила света которой в перпендикулярном направлении составляет одну канделу с каждого квадратного сантиметра.

8. СветимостьюК называется полный световой поток, посылаемый единицей светящейся поверхности в одну сторону, т. е. в телесный угол W=2p. Ее единица такая же, что и единица освещенности, т. е. лм/м2. Так как световой поток с единицы поверхности в телесный угол dW равен dФ=BqcosqdW, то

(1.15)

Для поверхностей, излучающих по закону Ламберта (т. е. поверхностная яркость не зависит от направления излучения), яркость Вq не зависит от угла q, поэтому

К=pВ (1.16)

Область явлений, излучаемых оптикой обширна. Оптические явления связаны с явлениями, изучаемые в других разделах физики, а оптические методы исследования относятся к наиболее точным. Оптике на протяжении длительного времени принадлежала ведущая роль в очень многих фундаментальных исследованиях и развитии основных физических воззрений.

Изучение геометрической оптики в школе начинается обычно с изучения законов распространения, отражения и преломления света. Законы эти никак не обобщаются, границы применимости не оговариваются (например, требование однородности и изотропности среды для прямолинейного распространения света). В результате учащиеся допускают ошибки при объяснении таких явлений, как миражи.

Этих недочетов можно избежать, если в преподавании основных понятий геометрической оптики использовать принцип Ферма.