Смекни!
smekni.com

Чисельне моделювання та експериментальне дослідження біляекраних течій (стр. 2 из 4)

Обсяг та структура роботи. Дисертація складається із вступу, п’яти розділів, висновків, списку використаних джерел (175 назв), виконана на 147 сторінках машинописного тексту, ілюстрована 68 рисунками, повний обсяг дисертації - 218 сторінок.

ЗМІСТ РОБОТИ

ВСТУП.

Обґрунтовується актуальність і практична цінність тематики, що вивчається, виділяється коло основних задач, приводиться короткий зміст дисертації. Формулюється мета роботи.

Розділ 1. АНАЛIЗ СУЧАСНОГО СТАНУ ПРОБЛЕМИ.

Аналізується сучасний стан математичного моделювання та експериментального дослідження обтікання тіл поблизу екрану. Розглянуто методи та виконано аналіз засобів фізичного (1.1) та математичного (1.2) моделювання обтікання тіл поблизу екрану. Розглядаються моделі та методи обчислювальної аеродинаміки, феноменологічних підходів до замикання системи осереднених рівнянь Нав’є-Стокса, способів фізичного моделювання межових умов на твердій поверхні.

Відзначається, що серед різноманітних підходів до розв`язування проблеми розрахунку обтікання тіл поблизу екрану ефективним є комплексний метод, який базується на фізичному та математичному моделюванні, що включає моделі та алгоритми різного рівня складності. Сформульовано мету досліджень.

Розділ 2. ЕКСПЕРИМЕНТАЛЬНЕ ДОСЛІДЖЕННЯ ОБТІКАННЯ ПРОФІЛЮ ПОБЛИЗУ ЕКРАНУ.

В аеродинамічній трубі Т-3 замкнутого типу з відкритою робочою частиною Харківського авіаційного інституту методом дзеркального відображення досліджувались особливості обтікання та аеродинамічні характеристики профілю крила CLARK-Y-4% для малих відстаней до землі.

Експеримент проведено з метою вивчення процесів обтікання тіл поблизу землі. Одержані результати використовуються при тестуванні розроблених чисельних методик.

Аеродинамічні характеристики досліджувались для відносних відстаней h=0,016, 0,024, 0,032, 0,04, 0,052 (

, H - відстань до екрану, b - хорда профілю) та кутів атаки a= -0,5о, 0о, 0,5о, 1,0о. Одержано коефіцієнти підйомної сили, лобового опору, поздовжнього моменту та аеродинамічної якості, як функції кута атаки та відстані до екрану (рис.1).

При від’ємному куті атаки на профіль діє від'ємна підйомна сила, яка притискує його до землі. Зростання кута атаки від 0o до 1o веде до збільшення підйомної сили більше ніж у два рази. Зменшення відстані до землі характеризується зростанням коефіцієнту підйомної сили до 25%. Лобовий опір при цьому зростає дуже незначно. Похідна

має від’ємне значення в дослідженому діапазоні відстаней до землі та кутів атаки. Це свідчить про наявність поздовжньої стійкості. Наближення профілю до землі призводить до розширення області підвищеного тиску на його нижній поверхні. В результаті центр тиску зміщується до задньої крайки профілю i поздовжній момент зростає. Так для кута атаки в 1o вiн збільшується на 25,5%.

Зменшення вiдстанi до землі з h=0,052 до h=0,016 призводить до зростання аеродинамічної якості профілю в середньому на 25%

Проведена візуалізація течії в районі передньої крайки профілю показала, що в дослідженому діапазоні відносних відстаней до землі та кутів атаки відрив течії не відбувається.

Розділ 3. ДОСЛІДЖЕННЯ ОБТІКАННЯ ПРОФІЛЮ ПОБЛИЗУ ЕКРАНУ МЕТОДОМ ДИСКРЕТНИХ ВИХОРІВ.

Розглядаються особливості реалізації методу дискретних вихорів для моделювання плоского обтікання тіл поблизу екрану. Розроблено методику, алгоритм та програми розрахунку обтікання профілю поблизу землі методом дискретних вихорів (МДВ) (3.1).

Проведено чисельні розрахунки обтікання профілів CLARK-Y та CLARK-YH у випадку безмежної рідини та поблизу екрану. Одержані результати аналізуються та порівнюються з експериментальними даними (3.2). Досліджено вплив вiдстанi до екрану на точність розрахунку аеродинамічних характеристик (рис. 2).

Розділ 4. ЧИСЕЛЬНЕ МОДЕЛЮВАННЯ В’ЯЗКИХ ТЕЧІЙ.

Основні проблеми чисельного розв`язку нестацiонарних рiвнянь Нав`є-Стокса в змінних вихор - функція течії в криволінійній неортогональній системі координат пов`язані з побудовою адаптивної сітки, заданням межових умов, розрахунком поля тиску, а також досягненням відповідної збіжності скінченно-різницевого аналога системи диференціальних рівнянь.

Наводиться постановка задачі чисельного моделювання течії в`язкої нестисливої рідини на основі нестацiонарних рівнянь Нав`є-Стокса для ламінарного та турбулентного режимів (4.1). Для замикання осереднених рівнянь Нав’є-Стокса використано двопараметричну k-e модель турбулентності.


Рис. 2. Розподілення коефіцієнта тиску на поверхні профілюкрила поблизу екрану:__ - розрахунок МДВ;š, D- експеримент (Серебрійський Я. М.)нижня та верхня поверхні

Вихідні рівняння записані в криволінійній неортогональній системі координат (4.1.1.). Реалiзовано декілька методів задання межових умов (4.1.2).

Проведений аналіз типів та методів побудови сіток дозволив взяти за основу блочну структуру (4.2). Розроблено методики побудови сітки методом багатьох поверхонь (4.2.1.) та шляхом розв’язку диференціальних рівнянь (4.2.2). Приклад побудови сіток вказаними методами показано на рис.3-4.

Розглянуто можливі підходи до розрахунку поля тиску (4.3.). Розроблено та реалізовано чотири методики визначення поля тиску в криволінійній не ортогональній системі координат за допомогою розв’язання рівнянь Пуассона для тиску (4.3.1), змінної Бернуллі (4.3.2), прямого інтегрування рівнянь кiлькостi руху (4.3.3) та за методом “SIMPLER” (4.3.4).

Найбільш важливою ланкою чисельного моделювання при розв`язанні системи диференціальних рівнянь в частинних похідних за допомогою скінченно-різницевих методів є алгоритм перетворення вихідних рівнянь в систему алгебраїчних рівнянь. Розроблено методики, алгоритми та програми розв’язку нестаціонарних рівнянь Нав’є-Стокса за допомогою наступних схем: протипоточної, гібридної, Леонардо другого та третього порядку апроксимації (4.4.1), верхньої релаксації (4.4.5), предиктор-коректор з розщепленням за часом (4.4.2), методом змінних напрямків (4.4.3) та матричної факторизації (4.4.4).

Рис. 3. Розрахункова сітка для циліндра поблизу екрану,побудована методом багатьох поверхонь

Рис. 4. Розрахункова сітка для автомобіля, побудована

шляхом розв’язку диференціальних рівнянь

Розділ 5. ЧИСЕЛЬНЕ ДОСЛІДЖЕННЯ ПРОЦЕСІВ ГІДРОАЕРОДИНАМІКИ ПРИ ОБТІКАННІ ТІЛ ПОБЛИЗУ ЕКРАНУ.

Проведено тестування розроблених методик чисельного розв`язку нестаціонарних рівнянь Нав’є-Стокса (5.1) на прикладі ламінарної течії рідини в каверні (5.1.1) та навколо ізольованого циліндра (5.1.2). Досліджено ефективність розроблених методик розрахунку тиску (5.1.3) з використанням сіток, які побудовані алгебраїчним способом та шляхом розв’язку диференціальних рівнянь.

Для турбулентного режиму течії розраховано обтікання пластини (5.1.4) та колового циліндра (5.1.5).

Проведено розрахунки обтікання тіл поблизу екрану (5.2): колового циліндра (5.2.1), профілю крила (5.2.2), автомобіля (5.2.3). Виконано аналіз структури полей течій та одержаних аеродинамiчних характеристик.

Як показав розрахунок, при обтіканні циліндра поблизу екрану утворюються два несиметричних вихорових згустки, при цьому верхній має більш правильну форму та більші розміри, ніж нижній. Це пов’язано з наявністю щілинного ефекту в місці мінімального зазору між циліндром та екраном, який призводить до того, що течія біля поверхні екрану безпосередньо за циліндром у шарі товщиною, спільномірною з розміром зазору, має значно більшу швидкість. Тому частина рідини, що попадає в цю ділянку течії, виноситься із приекранної частини донної області за циліндром. Передня та задня критичні точки розтiкання зміщуються по поверхнi цилiндра до екрану. Незначні переміщення точок відриву пояснюються стабілізуючим впливом екрану на аеродинамічний слід. Екран гальмує поперечний рух вихорових згустків в безпосередній близькості за циліндром і таким чином стабілізує положення точок відриву. Розподілення тиску на циліндрі показано на рис. 5.

Рис. 5. Розподілення тиску на циліндрі поблизу екрану:__- розрахунок; - - експеримент (Коваленко В.М)

Порівняння одержаних результатів з експериментальними даними та розрахунками інших авторів для профілю крила та автомобіля показано на рис. 6-8.

Рис. 6. Коефіцієнт тиску на профілі крила поблизу екрану:D, š -експеримент (Серебрійський Я. М.), нижня та верхня поверхні;__ - розрахунок

Рис. 7. Величина коефіцієнта підйомної сили для профілю крила CLARK-Y-4% поблизу екрану: D-експеримент (дана робота); _ _ - розрахунок (МДВ); __ - розрахунок (рiвняння Нав’є-Стокса)

Рис. 8. Коефіцієнт тиску на поверхні автомобіля


З урахуванням кривизни ліній течій проведено чисельний розрахунок відривної турбулентної течії в аеродинамічній трубі (рис. 9) (5.2.4). Досліджено вплив коефіцієнтів дисипації двопараметричної k-e моделі на точність розв’язку даної задачі. Для біляекранних течій знайдено та обґрунтовано їх величини. Розподілення розрахованих параметрів показано на рис. 10.

Рис. 9. Розрахункова область вiдривної течії в аеродинамічній трубі