Смекни!
smekni.com

Собственные колебания пластин (стр. 1 из 6)

Федеральное агентство по образованию

Государственное образовательное учреждение высшего профессионального образования
Вятский государственный гуманитарный университет

Математический факультет

Кафедра математического анализа и методики преподавания математики

Выпускная квалификационная работа

Собственные колебания пластин

Выполнила:

студентка V курса математического факультета

Чураева Анна Сергеевна

Научный руководитель: старший преподаватель кафедры математического анализа и МПМ С.А. Фалелеева

Рецензент: старший преподаватель кафедры математического анализа и МПМ Л.В. Ончукова

Допущена к защите в государственной аттестационной комиссии

«___» __________2005 г. Зав. кафедрой М.В. Крутихина

«___»___________2005 г. Декан факультета В.И. Варанкина

Киров

2005


Содержание

Введение........................................................................................................... 3

Глава I Основные положения математической физики и теории дифференциальных уравнений.................................................................................................... 4

1.1 Поперечные колебания. Начальные и граничные условия..................... 4

1.2 Метод разделения переменных или метод Фурье................................... 6

1.3 Однородные линейные уравнения второго порядка с постоянными коэффициентами......................................................................................... 8

Глава II Нахождение функций, описывающих собственные колебания мембран 11

2.1 Основные определения............................................................................ 11

2.2 Собственные колебания прямоугольной мембраны.............................. 12

2.3 Собственные колебания круглой мембраны.......................................... 19

Заключение.................................................................................................... 28

Библиографический список........................................................................... 29

Приложение................................................................................................... 30

Введение

Математическая физика ставит своей задачей возможно более точное изучение явлений природы. С этой целью она использует аппарат математики. Объектом изучения математической физики могут служить только те явления природы, которые поддаются измерению. Например, механическое движение, звук, теплота, свет и т. д.

Цели работы:

1. Изучить математическую литературу по данной теме.

2. Освоить основные методы решения задач математической физики и применить их к решению задач.

Задачи работы:

1. Решить двумерное уравнение колебаний мембраны при дополнительных условиях для прямоугольной и круглой мембраны.

2. Сравнить полученные результаты для обоих случаев с аналогичными задачами, решенными для других дополнительных условий.

Методы работы:

· Изучение специальной литературы;

· Решение задач.

Глава I Основные положения математической физики и теории дифференциальных уравнений

Круг вопросов математической физики тесно связан с изучением различных физических процессов. Сюда относятся явления, изучаемые в гидродинамике, теории упругости, электродинамике и т. д. Возникающие при этом математические задачи содержат много общих элементов и составляют предмет математической физики.

Дифференциальным уравнением с частными производными называется равенство, содержащее неизвестную функцию от нескольких переменных, независимые переменные и частные производные неизвестной функции по независимым переменным. Решением уравнения с частными производными называется функция, обращающая это уравнение в тождество [4].

1.1 Поперечные колебания. Начальные и граничные условия

При математическом описании физического процесса нужно, прежде всего, поставить задачу, т.е. сформировать условия, достаточные для однозначного определения процесса. Дифференциальные уравнения с частными производными имеют, вообще говоря, бесконечное множество решений. Поэтому в том случае, когда физическая задача приводится к уравнению с частными производными, для однозначной характеристики процесса необходимо задать некоторые дополнительные условия.

В случае обыкновенного дифференциального уравнения 2-го порядка частное решение определяется начальными условиями, например, заданием значений функции и ее первой производной при «начальном» значении аргумента. Для уравнения с частными производными возможны различные формы дополнительных условий.

Рассмотрим их для задачи о поперечных колебаниях струны (под струной понимаем тонкую упругую нить). Каждую точку струны длины l можно охарактеризовать значением ее абсциссы x. Для определения положения струны в момент времени t достаточно задать компоненты вектора смещения точки x в момент t. Тогда
будет задавать отклонение струны от оси абсцисс.
Если концы струны
закреплены, то должны выполняться граничные условия

,
.

Так как процесс колебания струны зависит от ее начальной формы и распределения скоростей, то следует задать начальные условия:

,

.

Таким образом, дополнительные условия состоят из граничных и начальных условий, где

и
– заданные функции точки.
Если концы струны движутся по заданному закону, то граничные условия (1.1.1) принимают другой вид:

,
,

где

и
- заданные функции времени t.

Возможны и другие типы граничных условий. Рассмотрим, например, задачу о продольных колебаниях пружины, один конец которой закреплен (точка подвеса), а другой конец свободен. Закон движения свободного конца не задан и зачастую является искомой функцией.

В точке подвеса x=0 отклонение

;

на свободном конце x=l натяжение пружины

равно нулю (нет внешних сил), так что математическая формулировка условия свободного конца имеет вид

.

Если конец x=0 движется по определенному закону

, а при x=l задана сила
, то

.

Типичным является также условие упругого закрепления, скажем для x=l

или
,

при котором конец x=l может перемещаться, но упругая сила закрепления вызывает на этом конце натяжение, стремящееся вернуть сместившийся конец в прежнее положение.

Если точка (система), относительно которой имеет место упругое закрепление, перемещается, и ее отклонение от начального положения задается функцией

, то граничное условие принимает вид

.

Условие упругого закрепления при x=0 имеет вид

.

Таким образом, имеют место три основных типа граничных условий, например, при x=0:

- граничные условия 1-го рода

- заданный режим,

- граничное условие 2-го рода

- заданная сила,

- граничное условие 3-го рода

- упругое закрепление.

Аналогично задаются граничные условия и на втором конце x=l. Если функция, задаваемая в правой части (

или
), равны нулю, то граничные условия называются однородными [8].

1.2 Метод разделения переменных или метод Фурье

Одним из наиболее распространенных методов решения уравнений с частными производными является метод разделения переменных или метод Фурье.