Учитывая
наложенных связей, найдем число независимых параметров системы (степенной свободы). . (4.29)Равенство (4.29) называют правилом фаз Гиббса.
Для однокомпонентной системы (
) в случае двух фаз ( ) имеется одна степень свободы, т.е. мы произвольно можем изменять только один параметр. В случае же трех фаз ( ) не имеется степеней свободы ( ), то есть сосуществование трех фаз в однокомпонентной системе возможно только в одной точке, называемой тройной точкой. Для воды тройная точка соответствует следующим значениям: .Если система не однокомпонентна, возможны боле сложные случаи. Так, двуфазная (
) двукомпонентная система ( ) обладает двумя степенями свободы. В этом случае вместо кривой фазового равновесия получим область в виде полосы, границы которой соответствуют фазовым диаграммам для каждой из чистых компонент, а внутренние области соответствуют различным значениям относительной концентрации компонент. Одна степень свободы в данном случае соответствует кривой сосуществования трех фаз, а соответствует четвертой точке сосуществования четырех фаз.4.
Как было рассмотрено выше, химический потенциал можно представить в виде:
Соответственно первые производные от химического потенциала равны удельным значениям энтропии, взятой с обратным знаком, и объеме:
(4.30)Если в точках, удовлетворяющих фазовому равновесию:
,первые производные химического потенциала для разных фаз испытывают разрыв:
, (4.31)говорят, что термодинамическая система испытывает фазовый переход I-го рода.
Для фазовых переходов первого рода характерно наличие срытой теплоты фазового перехода, отличной от нуля, и скачок удельных объемов системы. Скрытая удельная теплота фазового перехода определяется из соотношения:
(4.32)а скачок удельного объема равен:
(4.33)Примерами фазовых переходов первого рода являются процессы кипения и испарения жидкостей. Плавления твердых тел, преобразования кристаллической структуры и т.д.
Рассмотрим две близлежащие точки на кривой фазового равновесия (
) и ( ), параметры которых различаются на бесконечно малые величины. Тогда уравнение (4.25) справедливо и для дифференциалов химических потенциалов:отсюда следует:
(4.34)Выполняя преобразования в (4.34), получим:
(4.35)Выражение (4.35) получило название уравнения Клапейрона – Клаузиуса. Это уравнение позволяет получить вид кривой фазового равновесия по известным из эксперимента значениям теплоты фазового перехода
и объемов фаз и без привлечения понятия химического потенциала, которое достаточно сложно определить как теоретически, так и экспериментально.Большой практический интерес представляют так называемые метастабильные состояния. В этих состояниях одна фаза продолжает существовать в области устойчивости другой фазы:
Примерами достаточно устойчивых метастабильных состояний являются алмазы, аморфное стекло (наряду с кристаллическим горным хрусталем) и т.д. В природе и промышленных установках широко известны метастабильные состояния воды: перегретая жидкость и переохлажденный пар, а также переохлажденная жидкость.
Важным обстоятельством является то, что условием экспериментального осуществления этих состояний является отсутствие в системе новой фазы, примесей, загрязнений и т.д., т.е. отсутствие центра конденсации, парообразования и кристаллизации. Во всех этих случаях новая фаза возникает первоначально в малых количествах (капли, пузыри или кристаллы). Поэтому существенными становятся поверхностные эффекты, соизмеримые с объемными.
Для простоты ограничимся рассмотрением простейшего случая сосуществования двух пространственно неупорядоченных фазовых состояний - жидкости и пара. Рассмотрим жидкость, в которой находится небольшой пузырек насыщенного пара. При этом вдоль поверхности раздела действует сила поверхностного натяжения. Для ее учета введем параметры:
(4.36)Здесь
- площадь поверхности пленки,- коэффициент поверхностного натяжения. Знак “-” во втором равенстве (4.36) соответствует тому, что пленка стягивается и работа внешней силы направлена на увеличение поверхности:
(4.37)Тогда с учетом поверхностного натяжения потенциал Гиббса изменится на величину:
Вводя модель системы под поршнем и, учитывая равенство
, запишем выражение для потенциала Гиббса в виде (4.39)Здесь
и - удельные значения свободной энергии, и - удельные объемы каждой из фаз. При фиксированных значениях ( ) величина (4.39) достигает минимума. При этом потенциал Гиббса можно проварьировать по . Эти величины связаны с помощью соотношения: ,где R можно выразить через
: . Выберем в качестве независимых параметров величины , тогда потенциал Гиббса (4.39) можно переписать в виде: (4.46)(здесь учтено
)Выполняя варьирование (4.40), запишем:
(4.47)Учитывая независимость величин
, сведем (4.41) к системе (4.42а) (4.42б) (4.42в)Проанализируем полученное равенство. Из (4.42а) следует:
(4.43)