Смекни!
smekni.com

Термодинамическое равновесие и устойчивость Фазовые переходы (стр. 3 из 4)

Учитывая

наложенных связей, найдем число независимых параметров системы (степенной свободы).

. (4.29)

Равенство (4.29) называют правилом фаз Гиббса.

Для однокомпонентной системы (

) в случае двух фаз (
) имеется одна степень свободы, т.е. мы произвольно можем изменять только один параметр. В случае же трех фаз (
) не имеется степеней свободы (
), то есть сосуществование трех фаз в однокомпонентной системе возможно только в одной точке, называемой тройной точкой. Для воды тройная точка соответствует следующим значениям:
.

Если система не однокомпонентна, возможны боле сложные случаи. Так, двуфазная (

) двукомпонентная система (
) обладает двумя степенями свободы. В этом случае вместо кривой фазового равновесия получим область в виде полосы, границы которой соответствуют фазовым диаграммам для каждой из чистых компонент, а внутренние области соответствуют различным значениям относительной концентрации компонент. Одна степень свободы в данном случае соответствует кривой сосуществования трех фаз, а
соответствует четвертой точке сосуществования четырех фаз.

4.

Как было рассмотрено выше, химический потенциал можно представить в виде:

Соответственно первые производные от химического потенциала равны удельным значениям энтропии, взятой с обратным знаком, и объеме:

(4.30)

Если в точках, удовлетворяющих фазовому равновесию:

,

первые производные химического потенциала для разных фаз испытывают разрыв:

, (4.31)

говорят, что термодинамическая система испытывает фазовый переход I-го рода.

Для фазовых переходов первого рода характерно наличие срытой теплоты фазового перехода, отличной от нуля, и скачок удельных объемов системы. Скрытая удельная теплота фазового перехода определяется из соотношения:

(4.32)

а скачок удельного объема равен:

(4.33)

Примерами фазовых переходов первого рода являются процессы кипения и испарения жидкостей. Плавления твердых тел, преобразования кристаллической структуры и т.д.

Рассмотрим две близлежащие точки на кривой фазового равновесия (

) и (
), параметры которых различаются на бесконечно малые величины. Тогда уравнение (4.25) справедливо и для дифференциалов химических потенциалов:

отсюда следует:

(4.34)

Выполняя преобразования в (4.34), получим:

(4.35)

Выражение (4.35) получило название уравнения Клапейрона – Клаузиуса. Это уравнение позволяет получить вид кривой фазового равновесия по известным из эксперимента значениям теплоты фазового перехода

и объемов фаз
и
без привлечения понятия химического потенциала, которое достаточно сложно определить как теоретически, так и экспериментально.

Большой практический интерес представляют так называемые метастабильные состояния. В этих состояниях одна фаза продолжает существовать в области устойчивости другой фазы:

Примерами достаточно устойчивых метастабильных состояний являются алмазы, аморфное стекло (наряду с кристаллическим горным хрусталем) и т.д. В природе и промышленных установках широко известны метастабильные состояния воды: перегретая жидкость и переохлажденный пар, а также переохлажденная жидкость.

Важным обстоятельством является то, что условием экспериментального осуществления этих состояний является отсутствие в системе новой фазы, примесей, загрязнений и т.д., т.е. отсутствие центра конденсации, парообразования и кристаллизации. Во всех этих случаях новая фаза возникает первоначально в малых количествах (капли, пузыри или кристаллы). Поэтому существенными становятся поверхностные эффекты, соизмеримые с объемными.

Для простоты ограничимся рассмотрением простейшего случая сосуществования двух пространственно неупорядоченных фазовых состояний - жидкости и пара. Рассмотрим жидкость, в которой находится небольшой пузырек насыщенного пара. При этом вдоль поверхности раздела действует сила поверхностного натяжения. Для ее учета введем параметры:

(4.36)

Здесь

- площадь поверхности пленки,

- коэффициент поверхностного натяжения. Знак “-” во втором равенстве (4.36) соответствует тому, что пленка стягивается и работа внешней силы направлена на увеличение поверхности:

(4.37)

Тогда с учетом поверхностного натяжения потенциал Гиббса изменится на величину:

Вводя модель системы под поршнем и, учитывая равенство

, запишем выражение для потенциала Гиббса в виде

(4.39)

Здесь

и
- удельные значения свободной энергии,
и
- удельные объемы каждой из фаз. При фиксированных значениях (
) величина (4.39) достигает минимума. При этом потенциал Гиббса можно проварьировать по
. Эти величины связаны с помощью соотношения:

,

где R можно выразить через

:
. Выберем в качестве независимых параметров величины
, тогда потенциал Гиббса (4.39) можно переписать в виде:

(4.46)

(здесь учтено

)

Выполняя варьирование (4.40), запишем:

(4.47)

Учитывая независимость величин

, сведем (4.41) к системе

(4.42а)

(4.42б)

(4.42в)

Проанализируем полученное равенство. Из (4.42а) следует:

(4.43)