Его смысл в том, что давление
в фазе 1 равно внешнему давлению.Вводя выражения для химических потенциалов каждой из фаз и учитывая
запишем (4.42б) в виде:
(4.44)Здесь
- давление во II фазе. Отличие уравнения (4.44) от условия равновесия фаз (4.25) в том, что давление в (4.44) в каждой из фаз может быть различным.Из равенства (4.42в) следует:
.Сравнивая полученное равенство с (4.44) и выражением для химического потенциала, получим формулу для давления газа внутри сферического пузырька:
(4.45)Уравнение (4.45) представляет собой известную из курса общей физики формулу Лапласа. Обобщая (4.44) и (4.45) запишем условия равновесия между жидкостью и пузырьком пара в виде:
(4.46)В случае исследования задачи фазового перехода жидкость – твердое тело ситуация существенно осложняется в связи с необходимостью учета геометрических особенностей кристаллов, анизотропии направления преимущественного роста кристалла.
5.
Фазовые переходы наблюдаются и в более сложных случаях, при которых разрыв терпят только вторые производные химического потенциала по температуре и давлению. В этом случае кривая фазового равновесия определяется не одним, а тремя условиями:
(4.47а) (4.47б) (4.47в)Фазовые переходы, удовлетворяющие уравнениям (4.47), получили название фазовых переходов II рода. Очевидно, скрытая теплота фазового перехода и изменение удельного объема в этом случае равно нулю:
(4.48)Для получения дифференциального уравнения кривой фазового равновесия использовать уравнение Клапейрона – Клаузиуса (4.35) нельзя, т.к. при непосредственной подстановке в выражение (4.35) значений (4.48), получается неопределенность
. Учтем, что при движении вдоль кривой фазового равновесия сохраняется условие и . Тогда:(4.49)
Вычислим производные в (4.49)
(4.50а) (4.50б) (4.50в)Подставляя полученные выражения в (4.49), находим:
(4.51)Система линейных уравнений (4.51), записанная относительно
и является однородной. Поэтому ее нетривиальное решение существует только в том случае, если определитель, составленный из коэффициентов равен нулю. Поэтому запишем илиУчитывая полученное условие и выбирая из системы (4.51) любое уравнение, получаем:
(4.52)Уравнения (4.52) для кривой фазового равновесия в случае фазового перехода II рода получили название уравнений Эренфеста. В этом случае кривая фазового равновесия может быть определено по известным характеристикам скачков теплоемкости
, коэффициента теплового расширения , коэффициента упругости .Фазовые переходы второго рода встречаются значительно ранее фазовых переходов I рода. Это очевидно даже из условия (4.47), которое значительно жестче уравнения кривой фазового равновесия (4.юю) с условиями (4.31). Примерами таких фазовых переходов может служить переход проводника из сверхпроводящего состояния в нормальное при отсутствии магнитного поля.
Кроме того, встречаются фазовые переходы с равной нулю скрытой теплотой
, для которых при переходе наблюдается наличие сингулярности в калорическом уравнении (теплоемкость терпит разрыв второго рода). Такой тип фазовых переходов носит название фазового перехода типа. Примерами таких переходов являются переход жидкого гелия из сверхтекучего состояния в нормальное, переход в точке Кюри для ферромагнетиков, переходы из неупругого состояния в упругое для сплавов и т.д.