Таким образом в ограниченном полупроводнике или металле поворачивается вектор электрического поля и между
Холл экспериментально определил, что
Коэффициент Холла или постоянная Холла определяется из условия равенства сил:
Из (6.6) следует, что
где
В соответствии с (6.5), напряженность поля Холла
Сопоставляя (6.7) и (6.8) видим, что
где n - концентрация носителей заряда в единице объема. Из (6.9) следует, что постоянная Холла обратно пропорциональна концентрации носителей заряда и ее знак совпадает со знаком носителей заряда. Поле Холла (6.8) приводит к появлению э. д. с. Холла Vx, которая с учетом выражения (6.9) и геометрических размеров имеет вид:
где
В реальном кристалле полупроводника носители рассеиваются на примесях и колебаниях решетки. Учет данных процессов для полупроводников с собственной а) и примесной б) проводимостью приводит к следующему выражению для R:
а)
где e - заряд электрона,
Установка содержит механическую систему перемещения датчика Холла вдоль оси соленоида с фиксацией его положения, блок питания БП-1 соленоида, стрелочный прибор для регистрации тока соленоида и электронную схему измерения тока датчика Холла и холловскую э. д. с. (Рис.6.2). При определении э. д. с. Холла следует учесть сопутствующие эффекту Холла гальваномагнитные, термомагнитный и другие эффекты, которые являются четными по полю, то есть не зависят от направления вектора индукции B. Данное обстоятельство используется для их исключения - холловскую э. д. с. измеряют при двух направлениях магнитного поля, изменяя его направление переключателем П1.
Рис.6.2
При прямом направлении поля B+ напряжение между холловскими контактами
то есть Vдоб, обусловленное четными эффектами исключено.
Из формулы (6.10) следует, что зависимость э. д. с. Холла от индукции магнитного поля Vx (B) имеет линейный характер. Поэтому тангенс угла наклона прямой к оси абсцисс, вдоль которой ориентирована индукция поля, определим в следующем виде:
Равенство (6.13) позволяет вычислить постоянную Холла:
В реальных кристаллах постоянная Холла зависит от концентрации по закону, определяемому соотношением (6.11а), из которого можно определить с учетом (6.14) концентрацию носителей заряда в единице объема:
В положении переключателя "ПРОВ" определяется удельное электрическое сопротивление кристалла датчика r по измеренному падению напряжения V к величине тока i:
Так как плотность тока
Эксперимент осуществляется в следующей последовательности. В положении переключателя П1 - "0" и П2 - "ПРОВОД" снять зависимость тока через датчик Холла от разности потенциалов. Изменение напряжения осуществляется потенциометром R. Переключатель "П2" перевести в положение "Vx". Потенциометром R задать ток через датчик и измерить э. д. с. Холла при изменении магнитного поля соленоида в прямом и обратном направлении. Изменение знака поля осуществляется переключателем "Н - 0-Н+". Для этого датчик поместить в любую точку на оси соленоида (обычно в центре), для которой известна зависимость индукции поля от тока через соленоид, регулируемого потенциометром Rc.Э. д. с. Холла найти в результате двух измерений по формуле (6.12). Измерения повторяются несколько раз при других значениях тока через датчик Холла. Далее снять распределение поля по оси соленоида в положении переключателя П2 - "Vx".
1. Определение удельного сопротивления датчика.
Построить зависимость разности потенциалов V от тока i через датчик Холла по экспериментальным точкам по методу наименьших квадратов:
in и Vn - измеренные значения тока и разности потенциалов в положении переключателя П1 - "0", N - число измерений. Удельное сопротивление датчика r определяется по формуле:
2. Расчеты постоянной Холла R, концентрации n и подвижности m.
Построить линейную зависимость
где A и С определяются по формулам
Постоянную Холла R, концентрацию n и подвижность m определяем из выражений (6.14), (6.15) и (6.17):
При расчетах использовать заданную градуировочную кривую индукции поля соленоида от тока через него.