Рассмотрим малый элемент, который в процессе деформации изменил свою конфигурацию. На рисунке показана одна из граней, совпадающая с плоскостью осей X и Y:
аналогично
Угол сдвига — это угол, на который изменится первоначально прямой угол, т.е.
Аналогично определяется и другие компоненты тензора деформаций. Итак! Соотношения Коши:
Шесть компонент тензора деформаций выражаются через три компоненты вектора перемещения. Отсюда следует, что компоненты тензора деформаций не являются независимыми. И в самом деле, они связаны соотношениями называемыми уравнениями совместности деформаций.
Условиям совместности деформаций можно придать следующий смысл. Разрежем тело на малые элементы, деформируем каждый из элементов в отдельности и соберём из деформированных элементов тело. Тогда, если деформации правильные, т.е. удовлетворяющие уравнениям совместности, то собранное тело не будет иметь разрывов и пустот.
Будем основываться на известном нам законе Гука для одноосного состояния
и принципе независимости действия сил.
Обратим внимание на такой факт, что с точностью до малых высшего порядка, нормальные напряжения не вызывают сдвигов, а в свою очередь касательные напряжения не вызывают удлинений.
Рассмотрим малый элемент (рис.50).
Воспользуемся принципом независимости действия сил.
1) Пусть действуют только напряжения
2)
3)
При совместном действии всех трёх напряжений
Аналогично определяется и деформации
В результате получаем уравнения называемые обобщённым законом Гука.
К таким уравнениям нужно добавить ещё три соотношения
Три дифференциальных уравнения равновесия, шесть соотношений Коши и шесть соотношений обобщённого закона Гука составляют систему уравнений теории упругости, в которых неизвестными будут шесть компонент тензора напряжений, шесть компонент тензора деформаций и три компоненты перемещения.