Смекни!
smekni.com

Связь законов сохранения с пространством и временем (стр. 3 из 4)

Пространство обладает свойством однородности и изотропности, а время — однородности. Однородность пространства заключается в равноправии всех его точек, а изотропность — в равноправии всех направлений. Во времени все точки равноправны, не существует преимущественной точки отсчета, любую можно принимать за начальную. Указанные свойства пространства и времени связаны с главными законами физики — законами сохранения. Если свойства системы не меняются от преобразования переменных, то ей соответствует определенный закон сохранения. Это — одно из существенных выражений симметрии в мире. Симметрии относительно сдвига времени (однородности времени) соответствует закон сохранения энергии; симметрии относительно пространственного сдвига (однородности пространства) — закон сохранения импульса; симметрии по отношению поворота координатных осей (изотропности пространства) — закон сохранения момента импульса, или углового момента. Из этих свойств вытекает и независимость пространственно-временного интервала, его инвариантность и абсолютность по отношению ко всем системам отсчета.

Однако появившаяся в начале XX в. теория относительности А. Эйнштейна подвергла радикальному пересмотру традиционные представления о пространстве и времени. Специальная теория относительности (СТО, 1905 г.) объединила их в единое четырехмерное пространственно-временное многообразие (пространство-время). Введя запрет на превышение скорости света, СТО привела к парадоксальным выводам: ввиду принципиального ограничения скорости взаимодействия тел не может существовать единого потока времени для всей Вселенной, так как события, одновременные в одной системе отсчета, будут разновременными в другой. Иначе говоря, не существует самостоятельных, отделенных друг от друга пространства и времени, поскольку каждой системе отсчета (а все они равноправны, выделенных нет) присуще свое разделение событий на прошлые, настоящие и будущие. (Правда, заметить это можно только в

очень больших масштабах).

Общая теория относительности (ОТО, 1916 г.) привела к не менее фундаментальному выводу относительно пространства-времени. Его общий смысл таков: пространство и время существуют не «сами по себе», а в тесной зависимости от свойств материи. Высокая плотность вещества искривляет пространство (т.е. заставляет световой луч двигаться не по прямой, а по искривленной траектории, которая тем не менее будет кратчайшей) и замедляет течение времени.

Итак, подведу небольшой итог:

· В основе закона сохранения энергии лежит однородность времени, т. е. равнозначность всех моментов времени (симметрия по отношению к сдвигу начала отсчета времени). Равнозначность следует понимать в том смысле, что замена момента времени t1 на момент времени t2, без изменения значений координат и скорости частиц, не изменяет механические свойства системы. Это означает то, что после указанной замены, координаты и скорости частиц имеют в любой момент времени t2 + t такие же значения, какие имели до замены, в момент времени t1 + t.

· В основе закона сохранения импульса лежит однородность пространства, т. е. одинаковость свойств пространства во всех точках (симметрия по отношению к сдвигу начала координат). Одинаковость следует понимать в том смысле, что параллельный перенос замкнутой системы из одного места пространства в другое, без изменения взаимного расположения и скоростей частиц, не изменяет механические свойства системы.

· В основе закона сохранения момента импульса лежит изотропия пространства, т. е. одинаковость свойств пространства по всем направлениям (симметрия по отношению к повороту осей координат). Одинаковость следует понимать в том смысле, что поворот замкнутой системы, как целого, не отражается на её механических свойствах.


Глава III. Связь законов сохранения с пространством и временем.

§1. Теорема Э. Нётер.

Теорема Эмми Нётер[1] утверждает, что каждой симметрии физической системы соответствует некоторый закон сохранения. Так, закон сохранения энергии соответствует однородности времени, закон сохранения импульса — однородности пространства, закон сохранения момента импульса — изотропии пространства, закон сохранения электрического заряда — калибровочной симметрии и т. д.

Теорема обычно формулируется для систем, обладающих функционалом[2] действия, и выражает собой инвариантность лагранжиана[3] по отношению к некоторой непрерывной группе преобразований.

Теорема установлена в работах учёных гёттингенской школы Д. Гильберта, Ф. Клейна и Э. Нётер. В наиболее распространенной формулировке была доказана Эмми Нётер в 1918 году.

Формулировка теоремы в классической механике звучит следующим образом:

Каждой однопараметрической группе диффеоморфизмов[4] gs(qi), сохраняющих функцию Лагранжа, соответствует первый интеграл системы, равный:

В терминах инфинитезимальных преобразований, пусть инфинитезимальное преобразование координат имеет вид:

и функция Лагранжа
инвариантна относительно этих преобразований, то есть

Тогда у системы существует первый интеграл, равный:

Теорему можно обобщить на случай преобразований, затрагивающих также и время, если представить её движение как зависящее от некоторого параметра τ, причем в процессе движения t = τ. Тогда из преобразований:

следует первый интеграл:

В классической механике законы сохранения энергии, импульса и момента импульса выводятся из однородности/изотропности лагранжиана системы — лагранжиан (функция Лагранжа) не меняется со временем сам по себе и не изменяется переносом или поворотом системы в пространстве. По сути это означает то, что при рассмотрении некой замкнутой в лаборатории системы будут получены одни и те же результаты — вне зависимости от расположения лаборатории и времени проведения эксперимента. Другие симметрии лагранжиана системы, если они есть, соответствуют другим сохраняющимся в данной системе величинам (интегралам движения[5]); например, симметрия лагранжиана гравитационной и кулоновской задачи двух тел приводит к сохранению не только энергии, импульса и момента импульса, но и вектора Лапласа — Рунге — Ленца[6].


§2. Применение теоремы Нетер.

Для примера я покажу применение теоремы Нетер к универсальным преобразованиям симметрии с рассмотрения сдвига во времени.

Чтобы получить это преобразование надо, очевидно, считать

за независимый и постоянный параметр преобразования,
. В силу этого полная производная функции Лагранжа по времени может быть записана следующим образом:

(если бы L зависела явно от времени, к правой стороне равенства добавился бы член ).

Заменяя производные согласно уравнениям Лагранжа на , получим:

или

Отсюда видно, что величина

(1)

остается неизменной при движении замкнутой системы, то есть является одним из ее интегралов движения. Эта величина называется энергией системы. Аддитивность энергии непосредственно следует из аддитивности функции Лагранжа, через которую она выражается согласно (1) линейным образом.

Закон сохранения энергии справедлив не только для замкнутых систем, но и для систем, находящихся в постоянном (то есть не зависящем от времени) внешнем поле; единственное использованное в приведенном выводе свойство функции Лагранжа – отсутствие явной зависимости от времени – имеется и в ином случае. Механические системы, энергия которых сохраняется иногда называют консервативными.

Лагранжева функция замкнутой системы имеет вид:

где Т – квадратичная функция скоростей. Применяя к ней известную функцию Эйлера об однородных функциях, получим:

Подставляя это значение в (1), найдем:

в декартовых координатах:

Таким образом, энергия системы может быть представлена в виде суммы двух существенно различных членов: кинетической энергии, зависящей от скоростей, и потенциальной энергии, зависящей только от координат частиц.