Для многих смесей найдены критические энергии инициирования детонации в одномерной, двумерной и трехмерной постановках [12]. Получены выражения для величины критической энергии инициирования детонации [3,4].
Слабое инициирование, ускорение пламени.
Механизм возникновения детонации при таком инициировании в неподвижном газе описан в [13]. При поджигании горючей смеси возникает фронт нормального горения, движущийся с дозвуковой скоростью относительно газа впереди него. Расширяющиеся (ускоряющиеся) продукты горения порождают волны сжатия и вызывают движение в газе перед фронтом пламени. Волны сжатия догоняют друг друга, образуя ударные волны. Состояние газа перед фронтом пламени изменяется: повышаются температура, давление, скорость газа, возникает турбулентность, происходит искривление фронта горения и увеличение площади его поверхности, приводящее к возрастанию скорости нормального горения. Сложное взаимодействие многочисленных волн в образовавшемся турбулентном потоке приводит в некоторый момент времени к возникновению детонации. Детонация почти всегда возникает непосредственно перед фронтом ускоряющегося пламени [6]. Одновременно от точки, где произошел переход в детонацию, в обратном направлении начинает распространяться волна, называемая ретонационной волной. Эта волна дожигает смесь. Наиболее ярко это проявляется при движении в трубах, где существенно влияние стенок.
В неограниченном объеме также может происходить ускорение пламени. Экспериментальные и теоретические исследования [11,13,14] показывают, что возможны случаи, когда ускорение пламени заканчивается стабилизацией скорости горения на дозвуковом уровне, и когда ускорение пламени приводит к скачкообразному переходу горения в детонацию.
Работа [15] посвящена явлению самовоспламенения смеси за ударной волной – идея «взрыва во взрыве». Механизм градиентного ускорения пламени рассматривается в работе [16]. Исследовано также влияние возбуждения электронного состояния молекул кислорода с помощью электрического разряда на переход от дефлаграции к детонации. Во всех этих работах начальная скорость горючей смеси принималась равной нулю.
Сокращение преддетонационного расстояния может быть достигнуто повышением вкладываемой в инициатор энергии. В предельном случае, когда энергия превышает критическую энергию инициирования детонации, преддетонационное расстояние равно нулю. Выделяемая инициатором энергия определяет скорость ударной волны, движущейся по детонационноспособному газу. В работе [3,4] показано, что в покоящихся средах существует предельная скорость такой ударной волны, которая разделяет формирование детонации на два сценария: дальнейшее ускорение до возникновения детонационной волны и ослабление с последующим ускорением до возникновения детонационной волны. Также преддетонационное расстояние может быть сокращено посредством внесения диафрагмы. В данной работе получены результаты исследования этой ситуации.
Исследование формирования детонации в потоках.
Исследования формирования детонации в потоках горючей смеси проводились в Отделе №2 ИТЭС ОИВТ РАН [20-23]. Влияние турбулентности потока смеси на переход горения в детонацию было исследовано в CH4+O2+N2 смесях в ДКС длиной 7 м и диаметром 36 мм. Использовались метано-воздушные смеси в различной степени α обогащенные кислородом,
Получены зависимости концентрационных пределов детонации в CH4-O2-N2 смесях от числа Рейнольдса. Следует отметить, что границы существования детонации, т.е. концентрационные пределы, следует понимать условно, а именно при большей длине ДКС они могут расширяться.
Влияние диафрагм и препятствий на формирование детонации.
Численные исследования были проведены в Московском Государственном Университете [19]. На рис.5. представлены поля плотности, и скорости в последовательные промежутки времени в 6 и 7 турбулизирующих камерах. Видно, что в каждой камере после первой горение проходит одни и те же стадии: выход пламени из трубы, расширение и замедление в камере, выталкивание в следующую трубу с продолжением горения в камере.
Рис.5. Поля плотностей в 6-й – 7-й камерах. Отношение площадей камеры и трубы 25, объемная концентрация топлива 0.012. [19]
2. Цели.
Формирование детонации в потоке водородно-воздушной смеси при слабом инициировании.
Исследование воздействия преграды на переход горения в детонацию.
3. Экспериментальная установка.
Работы по исследованию ПГД производились на следующей установке, общий вид которой представлен на рис.6.
|
Рис.6. Внешний вид экспериментального стенда
ДКС – детонационная камера сгорания, ДЕ – демпферная емкость, ИБ – инжекторный блок, ИР – искровой разрядник, БИ – блок инициирования, С1, С2 – буферные емкости, Б1, Б2 – баллоны с реагентами, ЭПК1, ЭПК2 – электро-пневмоклапаны, ВН – вакуумный насос, ФД – фотодиоды, ДД – датчики давления, ССД – система сбора данных, К1, К2, К3, К4 – краны, Р1, Р2 – редукторы, М1, М2, М3 – манометры.
Рис.7. Инжекторный блок ИБ
Такая конструкция обеспечивала раздельную подачу реагентов и смешение их непосредственно в камере сгорания ДКС. Внутренний диаметр трубы составлял 83 мм, а длина ее – 2510 мм, вместе с демпферной емкостью ДЕ, представляющей собой продолжение детонационной камеры сгорания. С помощью крепежных фланцев к ДКС крепился инжекторный блок ИБ (рис.7), способный принимать различное положение вдоль трубы относительно системы инициирования – искрового разрядника. Реагенты поступали из буферных емкостей БЕ, а подача топлива отсекалась с помощью электро-пневмоклапанов ЭПК, время срабатывания которых составляло две
Поджиг горючей смеси производился с помощью искрового разряда, создаваемого искровым разрядником ИР (рис.9). ИР располагался на расстоянии 150 мм от инжекторного блока. Разряд на ИР происходил через определенное время после подачи реагентов в камеру сгорания. Это время составляло от 20 до 90 мс и регулировалось с помощью задержки, так же, как и сигнал, задерживающий подачу водорода относительно подачи воздуха.
Конструкция инжекторного блока со сменными инжекторами позволяла производить исследования с различными типами инжекторов.
Средствами диагностики служили пьезодатчики PCB-112B10 и PCB-113B34 , расположенные вдоль трубы на одинаковом расстоянии друг от друга (четыре сечения). В одном сечении с ними располагались фотодиоды ФД. ДД и ФД позволяли определить время прихода ударной волны и фронта пламени с погрешностью меньшей одной мкс. Сигналы записывались на два четырехлучевых цифровых запоминающих осциллографа Tektronix 3014B (частота канала – 100 МГц), образуя, таким образом, систему сбора данных ССД. Заключение по поводу фиксирования датчиками детонационной волны делалось на том основании, что фронт пламени регистрировался фотодатчиком одновременно с ударной волной, регистрируемой пьезодатчиком (в пределах разрешающей способности измерительных приборов).
4. Определение расхода реагентов.
В работе использовались в качестве инжекторов сверхзвуковые сопла. Для них была проведена серия тарировочных экспериментов, представляющие собой выяснение зависимости давления смеси и расхода в трубе от времени инжекции и давления в буферных емкостях. В ходе тарировочных работ время открытия клапанов равнялось времени инжекции при исследовании детонации.