Смекни!
smekni.com

Термодинамическое равновесие гетерогенных плазменных систем с суще (стр. 1 из 6)

Министерство образования и науки Украины

Одесский Национальный Университет им. И.И. Мечникова

Физический факультет

Кафедра теплофизики

Термодинамическое равновесие гетерогенных плазменных систем с существенной ионизацией компонентов

«допустить к защите» Курсовая работа

зав. кафедры теплофизики студентки IV курса

профессор_____Калинчак В.В. физического факультета

«__» _________ 2004г. Кобзаренко Л.А.

Научный руководитель

доцент Маренков В.И.

Одесса 2004 г.

Содержание

Введение

1. Идеально-газовый подход при описании ионизации в плазме

с конденсированными частицами

1.1. Ионизация в идеальном газе и плазмозоле. Система идентичных частиц в буферном газе. Учет ионизации атомов легкоионизируемой присадки

2. Дебаевский подход моделирования гетерогенных кулоновских

систем

2.1. Объемный заряд и потенциал в плазмозоле. Зависимость электронной концентрации от определяющих параметров плазмы

3. Ячеечные модели плазмы, содержащей частицы

3.1. Ионизация системы газ – частицы в модели Гибсона

3.2. Режим слабого экранирования

Выводы

Список литературы

Введение

Термодинамика рабочих тел МГД-генераторов на твердом топливе, электрические воздействия на процесс горения с целью его интенсификации и управления, высокотемпературная конденсация оксидов в продуктах сгорания металлизированных топлив, проблемы защиты окружающей среды, поведение пылегазованных образований в атмосфере и космосе, плазмохимия – все это далеко не полный перечень областей науки и техники, где требуется знание свойств плазмы с КДФ в различных состояниях.

Плазма с КДФ – ионизированный газ, содержащий малые частицы или кластеры, при чем эти частицы могут влиять на некоторые свойства плазмы.

В области температур Т

, характерной для приложений НТП с КДФ, важную роль играют процессы переноса заряда; поглощение электромагнитных волн в гетерогенной плазме непосредственно зависит от ее ионизации. Явление переноса – это кинетические процессы, но как известно из статистической физики [1] и физической кинетики [2], их скорости определяются градиентами соответствующих величин, т.е. в конечном счете их полем.

Существующие модели ГПС основываются на известных подходах (Саха, Дебая, а также, появившихся в последнее время, ячеечных),которые выходят из предположения о малости потенциальных взаимодействий ГПС, сравнительно с кинетической энергией теплового движения частиц. Однако, как показывает эксперимент в плотной и высокотемпературной ГПС ионизации макрочастиц и газовой фазы становится существенней, и в результате потенциальная энергия заряда плазм в самосогласованном поле сравнивается больше kT. В этом случаи применение результатов разработанных ранней моделью становится не корректным и требуется их усовершенствование с целью охватить интересную для приложения область высоких концентраций и температур. В работе рассматривается “аналитическая” продолжение статистической ячеечной модели плазмы на эту область термодинамических параметров. В первом разделе рассмотрены существующие подходы к описанию состояния ГПС. Второй раздел посвящен вопросам модификации и распространению статистической модели квазинейтральных ячеек на область высоких температур и концентраций ГПС.


Идеально-газовый подход при описании ионизации в плазме с

конденсированными частицами.

Ионизационное равновесие идеальных газов в термодинамических равновесных системах определено термодинамическими параметрами газа (Т, Р, V) и рассчитывается методам статистической физики. В системах, находящихся в равновесии, средние концентрации газовых частиц с течением времени не изменяются. Это значит, что скорости прямых и обратных химических реакций равны и выполняется закон действующих масс [1]. Рассматривая равновесную термическую ионизацию идеальных газов как баланс различных реакций ионизации и рекомбинации, Саха получил выражение для константы ионизационного равновесия в разреженном газе [3]. В настоящей главе рассмотрены основные физические аспекты такого подхода и его распространение на системы, содержащие частицы конденсированной дисперсной фазы (КДФ).

Ионизация в идеальном газе и плазмозоле.

Согласно определению идеальный газ – это система, состоящая из точечных молекулярных частиц, взаимодействующих только при столкновении, т.е. при их сближении на расстояния, сравнимые с их собственными размерами, которые пренебрежимо малы по сравнению с межчастичными расстояниями.

Если молекулы газа ионизовать, то в газовой фазе появляются заряды – электроны и ионы, которые взаимодействуют между собой кулоновскими силами. Эти силы дальнодействующие [4], и каждый атомарный заряд (электрон, ион) в данном случае подвергается действию всех других зарядов в системе. Однако, если его электростатическое взаимодействие с полем, создаваемым в месте локализации этого заряда всеми другими зарядами системы, мало по сравнению со средней кинетической энергией его поступательного движения (κТ), свойства ионизованного газа приближаются к свойствам идеального, а поправки на неидеальность также оказываются малыми [1, с.264].

Моделирование равновесных электрофизических свойств газа направлено прежде всего на получение зависимостей концентрации заряженных частиц от определяющих параметров системы – температуры Т, исходных концентраций компонентов nj (j нумеруют сорт молекул и атомов, потенциалы ионизации компонентов Iaj).

Действительно, с точки зрения практического использования, электронная и ионная концентрации в газе – наиболее интересные величины, так как ими определяются процессы переноса заряда. Газ содержит электроны, ионы, нейтральные молекулы и атомы. Характерной особенностью такого ионизованного газа является его квазинейтральность, т.е. вследствие электростатических взаимодействий в достаточно малых областях, занятых газом, наблюдается компенсация положительных и отрицательных зарядов (суммарный заряд такой области с точностью до флуктуации равен нулю).

Квазинейтральность – основное свойство плазменных сред и частично ионизованный газ в состоянии равновесия также обладает этим свойством. Согласно принципу детального равновесия, каждый канал ионизации (процесс, приводящий к появлению свободных электронов в объеме) скомпенсирован противоположным ему процессом рекомбинации так, что средние концентрации атомарных зарядов сохраняются. Таким образом, в газовой плазме непрерывно идут конкурирующие процессы: ионизация – рекомбинация, причем генерация и исчезновение электронов вследствие этих процессов скомпенсированы, а движение молекулярных зарядов происходит так, что в плазме наблюдается квазинейтральность. Обратимая реакция ионизации нейтрального атома:

, (1.1.1)

где А – нейтральный атом; М – произвольная частица (молекула, электрон, фотон, другой атом и т.д.), А+ - положительный ион, е- - электрон.

Аналогичным образом можно записать все прочие реакции, сопровождающиеся генерацией и исчезновением заряженных частиц в плазме. Для реакции (1.1.1) условие равновесия принимает вид

, (1.1.2)

где μа, μi, μe-химические потенциалы соответственно атома, иона и электрона, μm входят справа и слева в равенство (1.1.2) и могут быть сокращены.

Пренебрегая взаимодействием между компонентами газовой плазмы, химический потенциал компонента α определим по формуле для идеального газа [1]:

, (1.1.3)

где Sα – статистическая сумма;

; (1.1.4)

- число частиц сорта α в объеме плазмы V.

В (1.1.4) суммирование распространено на все состояния n частиц сорта α; qαn – статистический вес, а множитель exp(-Eαn/kT) определяет относительную вероятность состояния частицы с энергией Eαn (величина Eαn должна отсчитываться от общего уровня энергии группы частиц, участвующих в рассматриваемой реакции).`

Подставляя (1.1.3) в ( 1.1.2), получаем условие равновесия

или

. (1.1.5)

Уточним (1.1.4) для статистических сумм S (для простоты индекс α опускаем). Входящая в (1.1.4) полная энергия Е частиц слагается из энергии внутренних степеней свободы

j и энергии поступательного движения К. следовательно, (1.1.4) можно записать следующим образом:

, (1.1.6)

где

означает суммирование по внутренним состояниям, а
- по скоростям.

Выделив энергию основного состояния частицы ε0, представим первую из сумм (1.1.6) в виде