Сущность искрения – возникновение искрового разряда при размыкании цепи постоянного тока, обладающей индуктивностью. Прерывание тока вызывает резкое повышение напряжения
uL=L*di/dt в месте размыкания, пробой воздушного слоя с
образованием электрической искры. Чаще причиной искрения является неудовлетворительная коммутация. Коммутацией
называется процесс переключения секций обмотки якоря из одной
параллельной ветви в другую. Этот процесс совершается быстро и непрерывно, причем коммутируемые секции, проходя
геометрические нейтрали, замыкаются щеткой накоротко, а затем размыкаются. При х.х., когда тока в якоре нет, коммутируемой
секции э.д.с. не наводится, и тока в ней не возникает. При нагрузке ток в проводниках якоря создает магнитное поле якоря.
Магнитная ось Na-Sa этого поля проходит через геометрические нейтрали. Коммутируемая секция оказывается в интенсивном магнитном поле Ba якоря и в ней наводится э.д.с. ea=Ba*l*u.
Каждая секция обладает активным сопротивлением Rc (включающем и сопротивление щетки) и индуктивностью Lc. При замыкании
щеткой секции э.д.с. ea вызывает в ней ток секции ik=ea/Rc, который затем при размыкании прерывается. Обрыв тока, сопровождается искровым разрядом. Он возникает при отрыве каждой
последующей пластины коллектора от щетки, что воспринимается
как непрерывное искрение с характерным треском. Чем больше
ток якоря, скорость движения его проводников и число витков в
секци (Lc~wc2), тем больше э.д.с. ea, ток ik и тем сильнее искрение.
Искрение можно значительно ослабить. Для этого в зоне коммутируемых секций нужно скомпенсировать поле якоря (и э.д.с. ec) полем добавочных полюсов. Это узкие полюсы, расположенные между основными полюсами на геометрических нейтралях. Катушки добавочных полюсов включены в цепь якоря последовательно так, что их магнитный поток направлен навстречу потоку якоря. Все машины постоянного тока с мощностью от 1 кВт и выше имеют добавочные полюсы.
Однако безыскровая работа машины обеспечивается лишь при условиях, не выходящих за номинальные. При чрезмерных токах якоря (более 3*Iном) добавочные полюсы насыщаются и компенсация поля нарушается. Поэтому большие перегрузки, даже кратковременные, а также значительные превышения скорости могут вызвать искрение, опасное для коллектора.
Билет №3
1.Однофазные асинхронные двигатели.
это обычные двигатели небольшой мощности, широко при меняемые в устройствах автоматики и различных бытовых приборах. По конструкции они почти не отличаются от трехфазных асинхронных двигателей с короткозамкнутым ротором. Различие состоит в том, что на сердечнике статора однофазного двигателя уложена однофазная обмотка занимающая 2/3 пазов сердечника. При включении однофазной обмотки статора С1—С2 в сеть (рис.1)
переменный ток, проходя по обмотке, создает пульсирующий магнитный поток, неподвижный в пространстве, но изменяющийся от +Фmax до —Фмах. Для объяснения принципа действия однофазного асинхронного двигателя воспользуемся графическим методом разложения пульсирующего магнитного потока на два одинаковых, равных Фмах/2, магнитных потока Фпр и Фобр, вращающихся в разные стороны с одинаковой частотой (рис. 4.2),об/мин: nпp=noбp=f1*60/p=n1. Считаем поток Фпр, вращающийся в направлении вращения ротора, прямым, а поток Фобр — обратным. Допустим, что ротор двигателя вращается против часовой стрелки, т. е. в направлении потока Фпр. Частота вращения ротора n2 меньше частоты вращения магнитного потока n1, поэтому скольжение ротора относительно потока Фпр sпр=(n1—n2)/n1=s. Магнитный поток Фобр вращается встречно ротору, по этому частота вращения ротора n2 относительно этого потока отрицательна, а скольжение ротора относительно Фобр sобр=(n1+n2)/n1=2-sпр. Прямой Фпр и обратный Фобр магнитные потоки наводят в обмотке ротора ЭДС Е2пр и Е2обр которые создают в короткозамкнутом роторе соответственно токи I2 пр и I2обр. Частота тока в роторе пропорциональна скольжению, следовательно, f2пр= f1sпр; f2обр=f1(2-sпр). Таким образом, ток I2обр, наводимый обратным магнитным потоком в обмотке ротора, имеет частоту f2обр, намного превышающую частоту f2пр тока ротора I2пр, наведенного прямым потоком. В результате взаимодействия тока I2пp с магнитным потоком Фпр возникает электромагнитный момент Мпр= cмФпрI2пpcosj2пр, где См — постоянный коэффициент, определяемый конструкцией двигателя. Ток I2обр, взаимодействуя с магнитным потоком Фобр, создает электромагнитный момент Мовр, направленный встречно Mпp, т. е. против вращения ротора; Мобр= смФобрI2обрcosj2обр. Результирующий электромагнитный момент, действующий на ротор однофазного асинхронного двигателя, М=Мпр—Мобр. При небольших значениях скольжения s=sпp, т.е. при работе двигателя в пределах номинальной нагрузки, электромагнитный момент создается в основном за счет Мпр. Тормозящее действие момента обратного поля Мобр— незначительно. Объясняется это тем, что f2обр>>f2пр, следовательно, индуктивное сопротивление рассеяния обмотки ротора Х2обр=Х2sобр току I2обр намного больше его активного сопротивления. Поэтому ток I2обр, имеющий большую индуктивную составляющую, оказывает сильное размагничивающее действие на обратный магнитный поток Фобр, значительно ослабляя его. Если учесть, что коэффициент мощности cos j2обр= r2/sqrt(r2^2+x2обр^2) невелик, то станет ясно, почему Мобр в режиме нагрузки двигателя не оказывает значительного тормозящего действия на ротор однофазного двигателя.
2. Электромагнитное реле.
Реле – это устройство, в котором при достижении определенного значения входной величины выходная величина изменяется скачком – выходные контакты либо замыкаются – в управляемой цепи появляется ток (напряжение), либо размыкаются.
Электромагнитные реле по конструктивному исполнению воспринимающего элемента бывают клапанного типа и с поворотным якорем.На рис. Показано устройство простейшего электромагнитного реле клапанного типа: при определенной м.д.с. в цепи управления возникающая электромагнитная сила F притяжения якоря 3 к ярму 1 превышает силу противодействующей пружины 2. Реле срабатывает, воздушный зазор уменьшается, клапан 4 нажимает на подвижный контакт 5 и прижимает его с силой F, зависящей от значения воздушного зазора в конце хода якоря, к неподвижному контакту 6. Управляемая цепь (цепь управления) замыкается, исполнительный элемент 7 производит требуемое действие. Контакты реле в исходном состоянии могут как разомкнуты так и замкнуты. Условное графическое обозначение контактов (замыкающие, размыкающие) показано на рис.
Многие электромагнитные реле имеют несколько контактных пар, тогда их используют для управления несколькими электрическими цепями. Электрические реле выполняют множество функций, связанных с контролем режимов работы важных элементов электрической цепи – генераторов, трансформаторов, линии передач, различных приемников.
В зависимости от времени срабатывания – отрезка времени от момента появления управляющего воздействия до момента замыкания контактов реле – различают реле быстродействующие (tср<0,05 с), нормальные (tср=0,05...0,25 с) и с выдержкой времени (реле времени). Если реле «реагирует» только на значение входной величины (тока) и «не реагирует» на направление этой величины, то его называют нейтральным. Реле, «чувствующие» полярность (направление) входной величины (напряжения, тока), называются поляризованными. По способу воздействия исполнительного элемента реле на управляемую величину различают реле прямого действия, в которых исполнительный элемент (подвижная контактная система) непосредственно воздействует на цепь управления, и реле косвенного действия, в кот. исполнительный элемент воздействует на контролируемую цепь через другие аппараты. По способу включения воспринимающего элемента различают первичные, вторичные и промежуточные реле. Воспринимающим элементом электромагнитных реле является электромагнит, преобразующий управляющий ток (напряжение) в перемещение якоря относительно ярма. Воспринимающий элемент первичных реле включается непосредственно в контролируемые цепи. У вторичных реле воспринимающий элемент включается в контролируемые цепи через измерительные трансформаторы. Промежуточные реле работают в цепях исполнительных элементов других реле и предназначаются для усиления и преобразования сигналов первичных или вторичных реле.
Для любого реле характерным является не только время срабатывания, но и время отпускания – промежуток времени с момента разрыва цепи тока управления до момента размыкания (или замыкания) контактов реле.
Билет №4
1. Электромагнитный момент машины постоянного тока. Электромагнитная мощность.
согласно 1 з-ну Ньютона в применении к вращающемуся телу действующая на это тело движущая и тормозные вращающие м-ты уравновешивают др.др поэтому в генераторе при установившемся режиме работы эл-маг м-т Мэм=Мв-Мтр-Мс, где Мв - м-т на валу генератора развиваемый первичным двигателем, Мтр- м-т сил трения в подшипниках о воздух и на коллекторе ЭМ, Мс - тормозной м-т, вызываемый потерями на гистер.и вихревые токи в сердечнике якоря. Эти потери мощности появляются в рез-те вращения сердечника якоря в неподвижном магнитном поле полюсов. Возникающие при этом эл-маг силы оказывают на якорь тормозящее действие и в этом отношении проявляют себя подобно силам трения. В двигателе при устан.режиме работы Мэм=Мв+Мтр+Мс, где Мв - тормозной м-т на валу двигателя, развиваемый рабочей машиной. В генераторе Мэм является тормозным, а вдвигателе - вращающим м-ом, причем в обоих случаях Мв и Мэм противоположны по направлению. Развиваемая эл-маг м-ом Рэм- называется эл-маг мощностью и равна Рэм=Мэм2 пи n,( где 2 пи n представляет собой угловую скорость вращения). Если учесть, что линейная скорость на окружности якоря v=Pi*Da*n, тогда получим , что Рэм=2B*l*v*Ia, или Рэм=Еа*Ia. В обмотке якоря под действием ЭДС Еа и тока Ia развивается внутренняя эл мощность якоря Ра=Еа*Iа.получили, что внутренняя эл мощность якоря равна эл-маг мощности, развиваемой эл-маг м-ом, что отражает процесс преобразования мех.энергии в эл в генераторе и обратный процесс в двигателе. Для генератора имеем Ua*Ia=Ea*Ia-Ia^2*ra и для двигателя Ua*Ia=Ea*Ia+Ia^2*ra. Левые части этих выражений представляют собой эл мощности на зажимах якоря, первые члены правых частей- эл-маг мощность якоря и последние члены- эл потери мощности в якоре. Эти соотношения являются выражением з-на сохранения энергии и отражают процесс преобразования энергии в МПТ.