Смекни!
smekni.com

Шпаргалки по электротехнике (стр. 3 из 16)

2. Общие сведения об измерительных преобразователях. Делители напряжения, шунты, добавочные резисторы.

Для того чтобы ту или иную неэлектрическую величину измерить, ее нужно

предварительно преобразовать в электрич. сигнал. Такое преобразование осуществляется с помощью датчиков или первичных преобразователей. На рис. показана структурная схема для измерения неэлектрич. вел-ны электрич. методом. Здесь ПП- первичный преобразователь, ЭЦ- электрическая измерительная цепь, ВУ- выходное устройство. Измеряемая неэлектрич. вел-на Х поступает на вход ПП, на выходе которого появляется эл. сигнал У(Х). Далее этот сигнал преобразуется в ЭЦ в другой эл. сигнал У’ , который воспринимается ВУ, в результате чего на выходе всего устройства получается , например, отклонение указателя а(Х). Шкала выходного устройства градуирована непосредственно в знач. неэлектрич. вел-ны Х. Первичные преобразователи (ПП), используемые в измерениях, делятся на генераторные и параметрические. Генераторные ПП вырабатывают э.д.с. или ток и для их работы , как правило, не требуется дополнительный источник питания ( термозлектрические, пьезоэлектр., гальванические преобразователи). Параметрические ПП преобразуют изменение измеряемой неэлектрич. вел-ны в изменения того или иного параметра эл. цепи (R,L,M,C) и для их работы требуется дополнит. источник питания ( терморезисторы , реостатные, индуктивные и емкостные преобразователи). Электрич. измерительные цепи (ЭЦ) в рассматриваемых устройствах состоят обычно из мостов или измерительных потенциометров. В простейшем случае ЭЦ может отсутствовать, и сигнал У поступает непосредственно на выходной прибор. Выходные устройства весьма различны –от стрелочного магнитоэлетр. вольтметра до самопишущего прибора. Делители напряжения. В зависимости от назначения эл. цепи ее зл-ты могут соединяться различным образом. Сущ-ют 4 основных вида соединений эл-тов: последовательное, параллельное, треугольником и звездой. Послед. назыв. соед. , при котором ток в каждом элементе один и тот же. Для этих схем можно написать: U1+U2+…+Un=U или R1*I+R2*I+…+Rn*I=Rэк*I , следовательно Rэк=R1+R2+…+Rn. Послед. соед. Приемников используют обычно только а том случае, когда напряжения ,на которые они рассчитаны , меньше напряжения источника эл. энергии. Недостатком послед. соед. Приемников явл.то, что напряжение на каждом из них зависит от сопрот. других приемников. Поскольку напряжение источника равно сумме напряжений на последовательно включенных эл-тах цепи, последовательное соед. эл-тов применяют часто а качестве делителей напряжений и для регулир. напряж. на приемнике. Так, при исполозовании двигателей постоянного тока последоват. с цепью якоря включ. реостаты для ограничения пускового тока ( пусковые реостаты) и регулирования частоты вращения (регулировачные реостаты).Для измерения больших токов применяют амперметры, в которых магнитоэлектрический измерительный механизм включается в сочетании с шунтом. Шунтом называют резистор малого сопротивления, подключаемый параллельно к измерительному механизму(ИМ). Шунт служит для расширения предела измерения прибора по току. Сопротивление шунта выбирают из соотношения

Rш=Rи/(n-1), где Rи-сопритивление обмотки ИМ, n=I/Iи-коэф. шунтирования; I – измеряемый ток; Iи- допустимый ток обмотки. В вольтметре для расширения пределов измерения по напряжению последовательно с измерительным механизмом подключают резистор большого сопротивления, называемый добавочным резистором. Сопротивление добавочного резистора опред. из соотношения Rn=Rи*(m-1), где Rи-спротивление обмотки ИМ; m=U/Umv- масштабный коэф.; U- измеряемое напряжение ; Umv- допустимое напряжение на обмотке ИМ.

Шунты и добавочные резисторы являются простейшими измерительными преобразователями.

Билет №5

1. Универсальный коллекторный электродвигатель.

работает как от сети постоянного тока, так и от сети переменного тока. Возможность работы коллекторного двигателя после­довательного возбуждения от сети переменного тока объясняется тем, что при изменении полярности подводи­мого напряжения изменяются направления токов в обмотке якоря и в обмотке возбуждения. При этом изменение полярности полюсов статора практически совпадает с изменением направления тока в обмотке якоря. В итоге направление

электромагнитного вращающего момента не изменяется: М=CмIaФ=см(-Iа)(-Ф). В качестве универсального используют двигатель последовательного возбуждения, у которого ток якоря является и током возбуждения, что обеспечивает почти одновременное изменение направления тока в обмотке якоря Iа и магнитного потока возбуждения Ф при пере­ходе от положительного полупериода переменного напряжения сети к отрицательному. Если двигатель подключить к сети синусоидального переменного тока, то ток якоря ia и магнитный поток Ф будут изменяться по синусоидальному закону: i=Imax*sin(w1t); Ф=Фmax*sin(w1t-d), где d—угол сдвига фаз между током возбуждения и магнитным потоком, обусловленный магнитными потеря­ми в двигателе. Используя это выражения, получим формулу эл-маг момента коллекторного двигателя после­довательного возбуждения, включенного в сеть синусои­дального переменного тока, Нм: М'=Cм*Imax*Фmax* sinw1tsin(w1t-δ). При работе универсального коллекторного двигателя от сети переменного тока перемагничиванию подверга­ется вся магнитная система двигателя, включая стани­ну и полюса. Это приводит к увеличению магнитных потерь, для уменьшения которых станину и полюса статора приходится делать шихтованными. Коэффициент полезного действия универсального дви­гателя при его работе от сети переменного тока более низкий, чем при его работе от сети постоянного тока. Другой недостаток универсального двигателя — тяжелые условия коммутации, вызывающие интенсивное искрение на коллекторе при включении двигателя в сеть пере­менного тока. Этот недостаток объясняется наличием трансформаторной связи между обмотками возбуждения и якоря, что ведет к наведению в коммутируемых сек­циях трансформаторной ЭДС, ухудшающей процесс ком­мутации в двигателе. Частота вращения универсальных двигателей регу­лируется так же, как и в двигателях постоянного тока последовательного возбуждения. Наличие щеточно-коллекторного узла является причи­ной ряда недостатков универсальных коллекторных дви­гателей, особенно при их работе на переменном токе (искрение на коллекторе, радиопомехи, повышенный шум, невысокая надежность). Однако эти двигатели по сравнению с асинхронными и синхронными при часто­те питающего напряжения f1=50 Гц позволяют полу­чать частоту вращения до 10000 об/мин и более (наи­большая синхронная частота вращения при f1=50 Гц равна 3000 об/мин). Bзготавливаются не­сколько серий универсальных коллекторных двигателей например УВ, УЛ, МУН.

2. Электрические контакты. Износостойкость контактов, устройства дугогашения.

Соединение двух (или более) токоведущих элементов электрической цепи называют электрическим контактом. Различают подвижные и неподвижные контакты. При наличии неподвижных контактов токоведущие эл-ты эл. цепи в процессе работы не перемещаются друг относительно друга. В случае подвижных контактов (рычажные , скользящие контакты,) эл-ты цепи в процессе работы замыкаются и размыкаются. Важной характеристикой контактов явл. их электрическое сопротивление. Оно определяется в основном переходным сопрот., зависящим от площади контактирования. Для ум. переход. сопрот. стремятся увеличить силу прижатия контактов. Наличие тока в цепи контактов вызывает их нагрев, который пропорц. переход. сопрот. Т.е. по мере увеличения номинального тока коммутирующего аппарата необходимо повышать контактное нажатие. Кроме того , с ростом тока необходимо увеличить пов-ть охлаждения, т.е. размеры контактирующтх поверхностей. Размыкание электрической цепи при значительных токах и напряжениях, как правило сопровождается электрич. разрядом между расход. контактами. При расхождении контактов резко возрастает переходное сопротивление контакта и плотность тока в последней площадке контактирования. Контакты разогреваются до расплавления и образуется контактный перешеек из расплавленного металла, который при дальнейшем расхождении контактов рвется, и происходит испарение металла контактов.