У джерелах випаровувального типу газ проходить над поверхнею рідини і захоплює її пари. У обох випадках ступінь насичення водню парами залежить від його витрати і температури джерела.
Джерела розміщені в термостатах, що дозволяють підтримувати потрібну температуру. Постільки витрати водню великі, то щоб уникнути викиду випаровуваної рідини по магістралі у бік камери реактора в джерело подають всього 2-5 % всієї кількості водню, а на виході з джерела (у загальній магістралі) концентрована суміш розбавляється основним потоком [4].
Реактори можуть бути вертикальними і горизонтальними. У вертикальних реакторах, що мають осьову симетрію конструкції, легше одержати симетрію температурного і газодинамічного полів, що при багатомісній обробці забезпечує гарні результати.
Температура необхідна для гетерогенної реакції, створюється безпосередньо на поверхні пірамідального утримувача пластин, в той час як стінки реактора залишаються відносно холодними. Це досягається за рахунок індукційного нагріву утримувача і водяного охолоджування стінок реактора. Через мідну трубу індуктора також пропускають воду.
Піраміду – пластинотримпчів виготовляють з високо чистих сортів графіту, покритого (щоб уникнути забруднення реактора) карбідом кремнію. Для створення ідентичних умов осадження грані піраміди мають нахил 5-7
[4] . Передбачається також можливість обертання піраміди. Контроль температури пластин здійснюється фотопірометром, встановленим поза реактором. Реактор є кварцовою трубою, на виході якої відходи реакції збираються спеціальним пристроєм (скрубером), де спалюються у водневому полум'ї.Оскільки підготовлена до епітаксії поверхня пластини в період зберігання і транспортування здатна адсорбувати атмосферні гази, в тому числі кисень і вологу з утворенням тонких плівок оксиду, цикл обробки повинен передбачати видалення поверхневого шару в реакторі безпосередньо перед нарощуванням. З цією метою поверхню обробляють воднем при високій температурі (при цьому відбувається відновлення кремнію з оксиду), а потім хлористим воднем для видалення нарушеного шару. Вміст HCl в H2 складає 1-2% при цьому досягається швидкість травлення 0,5 мкм/хв.
Власне нарощування починається з моменту подачі в реактор суміші H2 і SiCl4, а також суміші H2 і BBr3. Швидкість росту плівки лежить в межах від десятих доль до декількох мікрометрів за хвилину. Ступінь легування (концентрація домішки в плівці) залежить від співвідношення BBr3 і SiCl4 у парогазовій суміші [4].
Повністю цикл роботи установки епітаксіального нарощування складається з наступних етапів:
– завантаження пластин і герметизація реактора;
– продування реактора азотом, потім воднем для витіснення атмосферного повітря;
– нагрів і витримка в атмосфері водню (відновлення оксидів);
– газове травлення за допомогою HCl на глибину 1- 2 мкм (видалення пошкодженого і забрудненого шару). Після закінчення продування воднем;
– зниження температури до робочого значення, подача суміші SiCl4, H2 і BBr3 (нарощування шару). Після закінчення продування воднем;
– подача суміші CO2, SiCl4, H2 і осадження оксиду SiO2 (гідроліз тетрахлориду кремнію). Продування воднем [4];
– охолоджування в потоці водню (плавне зниження потужності індукційного генератора);
– продування азотом, розгерметизація, вивантаження.
2.2 Механізм осадження кремнію із газової фази
При осадженні речовин з газової фази основні стадії такі [4]:
– перенесення реагентів до поверхні кристала-підкладки;
– їхня адсорбція на поверхні;
– реакція (або цикл реакцій) на поверхні;
– десорбція деяких продуктів реакції;
– перенесення цих продуктів від кристалу до основного потоку;
– кристалізація речовини.
Стадії 3 та 6 відбуваються одночасно. Щоб з'ясувати, яка з перерахованих стадій визначає швидкість процесу, необхідно знати залежності швидкостей різних процесів від перенасищення або таких параметрів осадження, як температура й швидкість потоку [4].
Перенесення речовини до поверхні й зворотний процес (стадії 1 й 5) визначаються швидкістю газового потоку в значно більшому ступені, чим температура підкладки. Навпаки, поверхневі процеси 2, 3, 4 й 6 [4], що є активаційними, сильно залежать від температури й не залежать від швидкості потоку.
Дані про процес, що визначає швидкість росту плівок при хімічних транспортних реакціях, суперечливі.
Відновленнягалогенидів кремнію.
При описі залежності швидкості росту від температури (див. рис. 3) можна виділити двіобласті: при t = 950—1100°С, де швидкість росту сильно залежить від температури й порівняно слабко від швидкості потоку (область I); при t > 1150° С швидкість росту майже не залежить від температури й збільшується зростом швидкості потоку (область II) [4].
У першій області швидкість ростувизначається поверхневими явищами, у другій – переносом речовини до поверхні (у тому числі дифузією й конвекцією). У першій області як при росту (з носієм – воднем), так і при травленні (з носієм – гелієм) швидкість процесу залежить від швидкості поверхневих реакцій.
Про це свідчать наступні спостереження. При підвищенні концентрації спостерігається насичення швидкостей росту; швидкість росту залежить від орієнтації підкладки; плівки мають грубу недосконалу поверхню, тобто локальні властивості поверхні неоднакові; енергії активації процесів росту й травлення, обумовлені по куту нахилу кривих 2, 3, 7 на рис. 3, близькі між собою [4].
Рисунок 3 – Залежність швидкості росту плівок кремнію від температури осадження [4].
Остання обставина дозволяє також зробити висновок, що механізми росту й травлення в області I у загальному однакові: травлення відрізняється лише тим, що виключається участь водню в хімічній взаємодії. Очевидно, травлення відбувається по реакції
2SiCl2 - Si + SiCl4 (2.1)
що протікає у зворотньому напрямку, з наступним утворенням полімеру (SiCl2)nH2. При високих температурах підкладки (область II) швидкість ростувизначаєтьсяперенесенням матеріалу. Порівняння кривих 2 й 3 на рисунку 3 показує, що при більш низьких швидкостях потоку ця область розширюється убік менших температур [4].
Разомз тим кінетика процесу при рості (криві 2 й 3) інша, ніж при травленні (крива 7). Зважаючи на ввесь комплекс експериментальних спостережень область II відсутня і швидкість процесу лімітується лише поверхневими процесами.
До висновку про наявність двох механізмів кристалізації залежно від температури підкладки, незалежно від Байлендера й виходячи з кілька інших передумов, прийшов також Гиваргизов [4]. По його даним, перехід з температурної області, у якій реакція відбувається на поверхні, у високотемпературну, де кремній частково утвориться в шарі газу над поверхнею у вигляді дрібних крапель, починається при tn = 1100°С и завершується при tn = 1200° С (vn = 45 л/год; psici4 = 6 мм. рт. ст.) [4].
Із експериментальних даних можна зробити висновок, що механізм процесу не вичерпується основним рівнянням реакції
SiІ4 +2Н2 - Si + 4НІ (2.2)
Виявляється, що в процесі також бере участь до 20% SiHCl3, з яких до 10% осідає на кремнію, а також невелика кількість(більше 1%) високомолекулярних полімерів осідає на стінках камери. Утвореннятрихлорсилану свідчить про наявність і значну роль субхлоридів, наприклад SiCl3, які, з одного боку, відновлюються на підкладці до кремнію, а зіншої, взаємодіють у паріз воднем, утворюючи SiHCl3 [4].
2.3 Легування кремнію при рості епітаксійних плівок
При гетероепітаксії здійснюють орієнтоване нарощювання речовини, що відрізняється по хімічному складу від речовини пластини. Якщо пластина – ізолюючий матеріал, то кінцевою метою гетероепітаксії є забезпечення взаємної ізоляції елементів структури, що формується в епітаксіальному шарі.
Гетероепітаксія на ізолюючих пластинах одержала широке застосування при виробництві МДН-структур і особливо КМДН-структур [3].
Основними умовами сумісності матеріалів пластини і епітаксіального шару є близькість параметрів кристалічної решітки, узгодження по коефіцієнту термічного розширення і відсутності хімічної взаємодії.
При виборі площини орієнтації пластини керуються щільністю упаковки атомів в гратках речовини, симетрією їх розташування щодо площин пластини і шару, що нарощюється, відповідністю положень атомів кремнію і алюмінію. Проте орієнтація площини пластини не однозначно визначає площину орієнтації епітаксіального шару. Це пов'язано з тим, що із-за невідповідності типів або параметрів решіток пластини і кремнію на початковій стадії зростання шар кремнію завжди полікристалічний. Потім, вніслідок анізотропії швидкості росту кремнію протікають конкуруючі процеси нарощювання кристалів різної орієнтації. Тому залежно від конкретних умов нарощування на площині, наприклад, сапфіра з орієнтацією (110) можуть отримані плівки кремнію з орієнтацією (111) або (110) [3].