Смекни!
smekni.com

Основні методи нанесення епітаксіальних шарів напівпровідника (стр. 5 из 6)

Рисунок 9 – Оже-спектри зарощення шарів для чотирьох стадій обробки [7]:

1- після розміщення зразка в камеру,

2- після термічного відпалювання при 870 К на протязі 60 хв,

3- після термічного відпалювання при 1120 К і осадження незначноі кількості кремнію,

4- після епітаксіального росту шару кремнію товщиною 60 нм при 870 К; чиста поверхня.

3.3.1 Температури епітаксії

Якщо під час росту зберігаються умови надвисокого вакууму й ріст здійснюється на чистих поверхнях кремнію, для МПЕ кремнію необхідні температури 850-1100К, тобто істотно нижче температур, необхідних для газофазнойэпитаксии (ГФЕ) (1250-1450 К) [6]. Крім того, різко відрізняються не тільки температури ГФЕ й МПЕ, але й закономірності процесу росту. При ГФЕ швидкість росту зменшується при зменшенні температури росту, у випадку ж МПЕ швидкість росту постійна в дуже широкому діапазоні температур.

У процесі росту кремнію можна виділити два етапи. На першому етапі атом кремнію вдаряється об поверхню Si, прилипає до неї й термалізується. На другомуетапі він дифундує по поверхні до місця вбудовування, що може бути, наприклад, щаблем. У рамках теорії БКФверхнямежа енергії активації поверхневої дифузії Esd < 1,1 еВ.

3.4 Легування

Особливості легування при молекулярно-проміневій епітаксії

Однією з відмітних особливостей МПЕ є низька швидкість росту плівки: приблизно 1 моношар/с або 1 мкм/год, що дозволяє легко модулювати молекулярні пучки, що потрапляють на підкладку, якщо час управління рухом заслінки менше 1 секунди.

Легування при МПЕ має декілька особливостей. В порівнянні з епітаксією з газової фази розширений вибір легуючих з'єднань, можливо управління профілем легування. Легуюча домішка може бути як p-, так і n-типу. Можливі два способи легування. Перший – після випаровування домішкові атоми досягають поверхні і вбудовуються в кристалічну решітку. Найбільш часто вживані домішки (As, B) випаровуються або дуже швидко або дуже поволі для ефективного управління. В результаті частіше вдаються до вживання Sb, Ga або Al.

У іншому способі легування використовується іонна імплантація. В цьому випадку застосовуються слабкострумові (1 мкА) іонні пучки з малою енергією. Низька енергія цього процесу дозволяє упроваджувати домішку на невелику глибину під поверхню шару, що росте, де вона вбудовується в кристалічну решітку. Цей спосіб дозволяє використовувати такі домішки як B, P і As [6].

Більшість напівпровідникових приладівмістятьшари, леговані різними домішками, зпевними профілями концентрації домішок і точно контрольованими границями. У цей час для одержання більшихгустинупакування й підвищення швидкодії приладів значні зусилля спрямовані на розвиток технологічних методів, що забезпечують більше високий ступінь контролю концентрації атомів домішки по товщині.

Більшість використовуваних у цей час методів введення в кремній легуючих атомів вимагає високих температур або під час процесу легування, або після нього. При цих температурах не можна вже зневажити дифузією домішок, профілі легування розмиваються, що обмежує мінімальну товщину легованих шарів. МПЕ надає можливість одержання надтонких шарівз різкими профілями концентрації домішок на будь-якій глибині.

У цей час застосовують два способи введення домішок у зростаючий шар. Домішки можуть вводитись шляхом спільного випаровування або шляхом іонної імплантації. Спільне випаровування легуючих домішок під час росту здійснюється за рахунок використання випарних осередківкнудсенівського типу під час епитаксіальногоросту кремнію. Але при використанні цього методу виникають певні труднощі, тому що деякі легуючі домішки випаровуються у вигляді кластерів (наприклад, Аs4, Р8, Sb4) [6], що може впливати наепітаксіальний процес. Інші труднощі полягають у тому,що коефіцієнт прилипания легуючих домішок до поверхні кремнію сильно залежить від температури підкладки. Другий спосіб внесення домішок в епітаксіальні плівки кремнію — використовують комбінації іонної імплантації й МПЕ. Цей метод пов'язаний з певними труднощами, тому що іонна імплантація у випадку нагрітих підкладок приводить до утворення протяжних дефектів, які важко відпалити. У випадку використання іонів низьких енергій і малих доз опромінення ця проблема, очевидно, не є настільки серйозною.

3.4.1 Модульоване легування

Шляхом повторення кілька разів циклу імплантація — низькотемпературне відпалювання й очищення — ріст були виготовлені кремнієві структури з модульованим легуванням. Імплантація іонів миш'яку з енергією 10 кэВпроводилася в кремнієвій пластині з орієнтацією поверхні (100). Доза імплантації становила 1015 см2. Після транспортування зразка й завантаження його в камеру МПЕ здійснювалося відпалювання в умовах надвисокого вакууму по методу. Крім відпалювання при температурі 870 К та при 1120 К використався 20-секундний імпульсне відпалювання при 1370 К для видалення забруднення вуглецем, що з'явилися у ході іонної імплантації [6]. Про епітаксіальний характер процесу росту свідчать картини ДМЕ, що спостерігалися від вирощених шарів. Потім зразок знову завантажувався в систему імплантації, у якій здійснювалася повторна імплантація іонів миш'яку дозою 1015 атомів/см2 при енергії 10 кэВ. Енергія імплантованих іонів була досить низькою, тому перекриття між першими й другим імплантованими шарами не відбувалося (глибина проникнення іонів As+з енергією 10 кеВстановить приблизно 30нм). Після імплантації й переносу зразка вирощувався другийепітаксіальнийшар. У нього вносилася третя доза імплантації 1015 атомів/см2 іонів As+ з енергією 10 кеВ, і в камері МПЕ здійснювалося відпалювання [6].

Зразки були досліджені методом РЗРІ для довільного напрямку й умов каналювання. Результати дослідження представлені на рис. 10. Профіль миш'яку у випадку довільного напрямку складається із трьох окремих піків на глибині 15, 64 й 122 нм. Ширина піка приблизно дорівнює 30 нм. Це може бути пов'язане з дифузією домішки протягом трьох процедур відпалювання. Хоча піки чітко розділені, концентрацію домішки між піками не можна вважатидопустимомалою. У всіхтрьохлегованих As шарахбільше 80% атомів миш'яку є домішками заміщення. Підвищенедеканалування спостерігається поблизу поверхні й може бути викликано недосконалістю епітаксіальногоросту на забруднених вуглецем підкладках [6].

Варто очікувати, що більше складні методи захисту поверхні і її очищеньприведуть до підвищення якості структур. Представлені вище результати говорять про те, що комбінація відпалювання відпалювання МПЕ кремнію й іонної імплантації низької енергії дає можливість прецизійного контролю за профілями легування для одержання надшвидких перемикаючих приладів, таких як транзистори на гарячих електронах. Очікується, що ці прилади незабаром приєднаються до довгого переліку діодів, транзисторів і детекторів, що виготовлені методом МПЕ кремнію.

Рисунок 10 – Спектри РЗРІ для модульованого легування структури, показаний профіль миш’яку [6]:

с- довільний напрямок;

d- каналювання (100).

Повний вигляд спектру кремнію для довільного напрямку(а)та з умовою каналування (100) (б)


3.5 Особливості гетероепітаксії кремнію на фосфіді галію

Вище обговорювався тільки ріст кремнію на кремнії, але низькі температури підкладки, характерні для процесу МПЕ, надають додаткові можливості для гетероепітаксіальногоросту. При гетероепітаксії на кремнії методом МПЕ можуть бути отримані шари металів, напівпровідників або діелектриків. Це було продемонстровано для подвійнихгетероструктур типу метал - напівпровідник (Si-CoSi2-Si) і типу діелектрик - напівпровідник (Si-CaF2-Si) [6]. Таким чином, були отримані зарощені металеві й ізолюючі шари, які могли використовуватися в якості контактних або ізолюючих шарів у тривимірному приладі. Епітаксійне вирощування одного напівпровідника на іншомунадає також безліч цікавих можливостей.

Гетероструктуры GaP-Si були вырашені на підкладках Ga. Епитаксіальнийшар кремнію товщиною порядку 1 мкм являє собою тонку кристалічну плівку, прозору для видимогосвітла. Подібні шари «прозорого кремнію» знаходять застосування в інтегральнихоптоелектроннихприладах. Наприклад, кремнієві діоди, виготовлені на таких шарах, можуть використовуватися як світлопропускаючі детектори в системах «світлове перо» [6] оптичного зчитування для компактних дисків або лазерних відеопрогравачів.


ВИСНОВКИ

Епітаксія - це процес нарощування на кристалічній підкладці атомів впорядкованих в монокристалічну структуру, причому структура нарощуваної плівки повністю повторює кристалічну орієнтацію підкладки [1]. Основна перевага техніки епітаксії полягає в можливості отримання надзвичайно чистих плівок при збереженні можливості регулювання рівня легування.

В наш час існують два основні технологічні методи епітаксії, що дозволяють формувати багатошарові структури з надтонкими шарами . Це газофазна епітаксія та молекулярно-променева (вакуумна) епітаксія.