Найдем дифференциал
,отсюда
(17)Подставив (17) в (16), получим:
Под знаком первой суммы стоит уравнение Лагранжа, т.е.
Тогда имеем:
(18)Подставим полученное значение вариации функции Лагранжа в (15), имеем:
Из (10) выразим
через и :Тогда вариация действия
(19)Мы должны потребовать равенства этой вариации нулю. В силу произвольности области интегрирования Т из равенства нулю интеграла следует равенство нулю подынтегрального выражения, т.е. мы приходим к тому, что необходимым и достаточным условием инвариантности действия относительно преобразования (7) служит удовлетворение уравнения
.Заменим
и , используя соотношения (7) и (8), имеем:Вынесем l за скобки и разделим на нее обе части уравнения. Окончательно получим необходимое условие:
(20)Другими словами, из инвариантности действия относительно (7) мы получили то следствие, что величина
(21)остается постоянной во времени. Это и есть точное утверждение теоремы Нётер.
1. Величина (21) еще не является динамической величиной – кроме обобщенных координат, скоростей и времени она зависит еще и от задающих преобразований функций
. (21) станет динамическим законом только тогда, когда сами задающие (7) функции будут (помимо параметров) зависеть только от .2. Обратим внимание на разный характер двух членов в (21). Первый из них включает саму функцию Лагранжа, поэтому обязательно перепутывает все степени свободы системы и поэтому может обладать самое большое асимптотической аддитивностью (2). Напротив, второй имеет явную форму суммы по отдельным степеням свободы. Таким образом, если преобразование, относительно которого действие инвариантно, затрагивает время, то мы можем надеяться на сохранение только асимптотически аддитивной величины, если же преобразование меняет лишь координаты, то сохраняться будет точно аддитивная величина.
Таким образом, была сформулирована и доказана теорема Нётер. Существенно то, что теорема Нётер позволяет, при заданном виде функции Лагранжа, найти аддитивные интегралы движения в виде явных функций координат и скоростей, не интегрируя никаких уравнений, ведь в общем случае каждый из интегралов движения находится только интегрированием системы, число уравнений которой только на одно меньше полной системы уравнений движения.
1. Медведев Б.В. Начала теоретической физики. Механика. Теория поля. Элементы квантовой механики: Учебн. Пособие для вузов. – М.: Наука, 1977. – 496 с.
2. Ландау Л.Д., Лифшиц Е.М. Механика. Электродинамика: Краткий курс теоретической физики. Кн. 1. – М.: Наука, 1969 – 271 с.
3. Рымкевич П.А. Курс физики [Для физ-мат фак. пед. институтов] Изд. 2-е, перераб и доп. М.: Высшая школа, 1975.