В соответствии с (3) энтропия измеряется в кал/(моль· К) (энтропийная единица - э. е.) и дж/(моль·К). При расчётах обычно применяют значения Энтропия в стандартном состоянии, чаще всего при 298,15 К (25 °С), т. е. S0298.
Энтропия увеличивается при переходе вещества в состояние с большей энергией. D S сублимации > DS парообразования >> DS плавления >DS полиморфного превращения. Например, энтропия воды в кристаллическом состоянии равна 11,5, в жидком - 16,75, в газообразном - 45,11 э. е.
Чем выше твёрдость вещества, тем меньше его энтропия; так, энтропия алмаза (0,57 э. е.) вдвое меньше энтропии графита (1,37 э. е.). Карбиды, бориды и другие очень твёрдые вещества характеризуются небольшой Энтропия аморфного тела несколько больше энтропии кристаллического. Возрастание степени дисперсности системы также приводит к некоторому увеличению её энтропии.
Энтропия возрастает по мере усложнения молекулы вещества; так, для газов N2О, N2O3 и N2O5 Энтропия составляет соответственно 52,6; 73,4 и 85,0 э. е. При одной и той же молекулярной массе энтропия разветвленных углеводородов меньше энтропии неразветвлённых; энтропия циклоалкана (циклана) меньше энтропии соответствующего ему алкена.
Энтропия простых веществ и соединений (например, хлоридов ACIn), а также её изменения при плавлении и парообразовании являются периодическими функциями порядкового номера соответствующего элемента. Периодичность изменения энтропии для сходных химических реакций типа 1/n Акрист + 1/2Сl2газ = 1/n ACln крист практически не проявляется. В совокупности веществ-аналогов, например АСl4газ (А - С, Si, Ge, Sn, Pb) энтропия изменяется закономерно. Сходство веществ (N2 и СО; CdCl2 и ZnCl2; Ag2Se и Ag2Te; ВаСОз и BaSiO3; PbWO4 и РЬМоО4) проявляется в близости их энтропии. Выявление закономерности изменения энтропии в рядах подобных веществ, обусловленного различиями в их строении и составе, позволило разработать методы приближённого расчёта энтропии.
Знак изменения энтропии при химической реакции DS х. р. определяется знаком изменения объёма системы DV х. р.; однако возможны процессы (изомеризация, циклизация), в которых DS х. р. № 0, хотя DV х. р. » 0. В соответствии с уравнением DG = DН - ТDS (G - гиббсова энергия, Н - энтальпия) знак и абсолютное значение DS х. р. важны для суждения о влиянии температуры на равновесие химическое. Возможны самопроизвольные экзотермические. процессы (DG < 0, DH < 0), протекающие с уменьшением энтропии (DS < 0). Такие процессы распространены, в частности, при растворении (например, комплексообразование), что свидетельствует о важности химических взаимодействий между участвующими в них веществами.[3, 157-163]
Термодинамика и энтропия.
Так, для термодинамической системы, совершающей квазистатический (бесконечно медленно) циклический процесс, в котором система последовательно получает малые количества теплоты dQ при соответствующих значениях абсолютной температуры Т, интеграл от «приведенного» количества теплоты dQ/ Т по всему циклу равен нулю
т.н. равенство КлаузиусаЭто равенство, эквивалентное второму началу термодинамики для равновесных процессов, Клаузиус получил, рассматривая произвольный циклический процесс как сумму очень большого, в пределе бесконечного, числа элементарных обратимых Карно циклов. Математически равенство Клаузиуса необходимо и достаточно для того, чтобы выражение
dS = dQ/T (1)
представляло собой полный дифференциал функции состояния S, названное «энтропия» (дифференциальное определение энтропии). Разность энтропии системы в двух произвольных состояниях А и В (заданных, например, значениями температур и объемов) равна
(2)(интегральное определение энтропии). Интегрирование здесь ведется вдоль пути любого квазистатического процесса, связывающего состояния А и В, при этом, согласно равенству Клаузиуса, приращение энтропии DS = SB - SA не зависит от пути интегрирования.
Т. о., из второго начала термодинамики следует, что существует однозначная функция состояния S, которая при квазистатических адиабатных процессах (dQ = 0) остаётся постоянной. Процессы, в которых энтропия остаётся постоянной, называются изоэнтропийными. Примером может служить процесс, широко используемый для получения низких температур, - адиабатное размагничивание. При изотермических процессах изменение энтропии равно отношению сообщенной системе теплоты к абсолютной температуре. Например, изменение энтропии при испарении жидкости равно отношению теплоты испарения к температуре испарения при условии равновесия жидкости с её насыщенным паром.
Согласно первому началу термодинамики (закону сохранения энергии), dQ = dU+pdV, т. е. сообщаемое системе количество теплоты равно сумме приращения внутренней энергии dU и совершаемой системой работы pdV, где р - давление, V - объём системы. С учётом первого начала термодинамики дифференциальное определение энтропии принимает вид
(3)откуда следует, что при выборе в качестве независимых переменных внутренней энергии U и объёма V частные производные Энтропия связаны с абсолютной температурой и давлением соотношениями:
(4) и (5)Эти выражения представляют собой уравнения состояния системы (первое - калорическое, второе - термическое). Уравнение (4) лежит в основе определения абсолютной температуры.
Формула (2) определяет энтропию лишь с точностью до аддитивной постоянной (т. е. оставляет начало отсчёта энтропии произвольным). Абсолютное значение энтропии позволяет установить третье начало термодинамики, или Нернста теорему: при стремлении абсолютной температуры к нулю разность DS для любого вещества стремится к нулю независимо от внешних параметров. Поэтому: энтропия всех веществ при абсолютном нуле температуры можно принять равной нулю (эту формулировку теоремы Нернста предложил в 1911 М. Планк). Основываясь на ней, за начальную точку отсчёта энтропии принимают
= 0 при Т = 0.Важность понятия энтропии для анализа необратимых (неравновесных) процессов: также была показана впервые Клаузиусом. Для необратимых процессов интеграл от приведённой теплоты dQ / Т по замкнутому пути всегда отрицателен
(
, т. н. неравенство Клаузиуса).Это неравенство - следствие теоремы Карно: кпд частично или полностью необратимого циклического процесса всегда меньше, чем кпд обратимого цикла. Из неравенства Клаузиуса вытекает, что
6)поэтому энтропия адиабатически изолированной системы при необратимых процессах может только возрастать.
Т. о., энтропия определяет характер процессов в адиабатической системе: возможны только такие процессы, при которых энтропия либо остаётся неизменной (обратимые процессы), либо возрастает (необратимые процессы). При этом не обязательно, чтобы возрастала энтропия каждого из тел, участвующего в процессе. Увеличивается общая сумма энтропии тел, в которых процесс вызвал изменения.
Термодинамика неравновесных процессов и энтропия
Термодинамика неравновесных процессов, раздел физики, изучающий неравновесные процессы (диффузию, вязкость, термоэлектрические явления и др.) на основе общих законов термодинамики. Для количественного изучения неравновесных процессов, в частности определения их скоростей в зависимости от внешних условий, составляются уравнения баланса массы, импульса, энергии, а также энтропии для элементарных объемов системы, и эти уравнения исследуются совместно с уравнениями рассматриваемых процессов. Термодинамика неравновесных процессов — теоретическая основа исследования открытых систем, в т. ч. живых существ.
Термодинамическому равновесию адиабатической системы соответствует состояние с максимумом энтропии может иметь не один, а несколько максимумов, при этом система будет иметь несколько состояний равновесия. Равновесие, которому соответствует наибольший максимум энтропии, называется абсолютно устойчивым (стабильным). Из условия максимальности энтропии адиабатические системы в состоянии равновесия вытекает важное следствие: температура всех частей системы в состоянии равновесия одинакова.
Понятие «Энтропия» применимо и к термодинамически неравновесным состояниям, если отклонения от термодинамического равновесия невелики и можно ввести представление о локальном термодинамическом равновесии в малых, но ещё макроскопических объёмах. Такие состояния можно охарактеризовать термодинамическими параметрами (температурой, давлением и т. д.), слабо зависящими от пространственных координат и времени, а энтропия термодинамически неравновесного состояния определить как энтропию равновесного состояния, характеризующегося теми же значениями параметров. В целом энтропия неравновесной системы равна сумме энтропии её частей, находящихся в локальном равновесии.
Термодинамика неравновесных процессов позволяет более детально, чем классическая термодинамика, исследовать процесс возрастания энтропии и вычислить количество энтропии, образующейся в единице объёма в единицу времени вследствие отклонения системы от термодинамического равновесия - производство энтропии. Производство энтропии всегда положительно и математически выражается квадратичной формой от градиентов термодинамических параметров (температуры, гидродинамической скорости или концентраций компонентов смеси) с коэффициентами, называемыми кинетическими (см. Онсагера теорема).