Смекни!
smekni.com

Энергия энтропия энергетика Идеи И Пригожина и их значение для современной науки (стр. 3 из 5)

Статистическая физика связывает энтропию с вероятностью осуществления данного макроскопического состояния системы. Энтропия определяется через логарифм статистического веса W данного равновесного состояния

S= k ln W (E, N), (7)

где k - Больцмана постоянная, W (E, N) - число квантовомеханических уровней в узком интервале энергии DЕ вблизи значения энергии Е системы из N частиц. Впервые связь энтропии с вероятностью состояния системы была установлена Л. Больцманом в 1872: возрастание энтропии системы обусловлено её переходом из менее вероятного состояния в более вероятное. Иными словами, эволюция замкнутой системы осуществляется в направлении наиболее вероятного распределения энергии по отдельным подсистемам. [4, 147]

В отличие от термодинамики статистическая физика рассматривает особый класс процессов - флуктуации, при которых система переходит из более вероятного состояния в менее вероятное, и её энтропия уменьшается. Наличие флуктуаций показывает, что закон возрастания энтропии выполняется только в среднем для достаточно большого промежутка времени.

Энтропия в статистической физике тесно связана с информационной энтропией, которая служит мерой неопределённости сообщений данного источника (сообщения описываются множеством величин х1, x2,..., xn, которые могут быть, например, словами какого-либо языка, и соответствующих вероятностей p1, p2,..., pn появления величин x1, x2,..., xn в сообщении). Для определённого (дискретного) статистического распределения вероятностей рк информационной энтропией называют величину

при условии

(8)

Значение Ни равно нулю, если какое-либо из pk равно 1, а остальные - нулю, т. е. неопределённость в информации отсутствует. Энтропия принимает наибольшее значение, когда pk равны между собой и неопределённость в информации максимальна. Информационная энтропия, как и термодинамическая, обладает свойством аддитивности (энтропия нескольких сообщений равна сумме энтропии отдельных сообщений). К. Шеннон показал, что энтропия источника информации определяет критическое значение скорости «помехоустойчивой» передачи информации по конкретному каналу связи. Из вероятностной трактовки информационной энтропии могут быть выведены основные распределения статистической физики: каноническое распределение Гиббса, которое соответствует максимальному значению информационной энтропии при заданной средней энергии, и большое каноническое распределение Гиббса - при заданных средней энергии и числа частиц в системе. [3, 214]

Энергетика

Энергетика:

1) энергетическая наука — наука о закономерностях процессов и явлений, прямо или косвенно связанных с получением, преобразованием, передачей, распределением и использованием различных видов энергии, о совершенствовании методов прогнозирования и эксплуатации энергетических систем, повышении кпд энергетических установок и уменьшении их экологического влияния на природу.

2) Энергосистема — топливно-энергетический комплекс страны, область народного хозяйства, охватывающая энергетические ресурсы, выработку, преобразование, передачу и использование различных видов энергии. Ведущая область энергетики — электроэнергетика. В энергосистему входят системы электроэнергетические, снабжения различными видами топлива (продукцией нефтедобывающей, газовой, угольной, торфяной и сланцевой промышленности), ядерной энергетики, обычно объединяемые в масштабах страны в Единую энергетическую систему.[7, 90]

Энергетика включает в себя ряд отраслей:

электроэнергетика;

тепловая электроэнергетика;

ядерная энергетика;

гидроэлектроэнергетика;

теплоэнергетика;

добыча, переработка энергоресурсов;

газовая промышленность;

угольная промышленность;

нефтяная промышленность.

Электроэнергетика

Электроэнергетика — ведущая составляющая часть энергетики, обеспечивающая электрификацию хозяйства страны на основе рационального производства и распределения электроэнергии. Электроэнергетика имеет важное значение в хозяйстве любой промышленно развитой страны, что объясняется такими преимуществами электроэнергии перед энергией других видов, как относительная лёгкость передачи на большие расстояния, распределения между потребителями, а также преобразования в другие виды энергии (механическую, тепловую, химическую, световую и др.). Отличительной чертой электроэнергии является одновременность её генерирования и потребления.[6, 63]

Основная часть электроэнергии вырабатывается крупными электростанциями:

тепловыми (ТЭС):

конденсационными (КЭС),

теплофикационными (ТЭЦ),

атомными (АЭС);

гидравлическими (ГЭС):

гидравлическими (ГЭС),

гидроаккумулирующими (ГАЭС).

Совокупность электростанций, электрических и тепловых сетей, соединенных между собой и связанных общностью режима в непрерывном процессе производства, преобразования и распределения электрической и тепловой энергии при общем управлении этим режимом образует энергетическую систему. Совокупность электрического оборудования объектов энергосистемы называется электрической частью энергосистемы.

В электроэнергетике рассматриваются процессы генерации, передачи, распределения электроэнергии и потребления электроэнергии.

Теплоэнергетика

Теплоэнергетика, отрасль энергетики, занимающаяся преобразованием теплоты в др. виды энергии, главным образом в механическую и электрическую. Для генерирования механической энергии за счёт теплоты служат теплосиловые установки; полученная в этих установках механическая энергия используется для привода рабочих машин (металлообрабатывающих станков, автомобилей, конвейеров и т. д.) или электромеханических генераторов, с помощью которых вырабатывается электроэнергия. Установки, в которых преобразование теплоты в электроэнергию осуществляется без электромеханических генераторов, называются установками прямого преобразования энергии. К ним относят магнитогидродинамические генераторы, термоэлектрические генераторы, термоэмиссионные преобразователи энергии. [6, 94]

Ядерная энергетика

Ядерная энергетика, отрасль энергетики, использующая ядерную энергию (атомную энергию) в целях электрификации и теплофикации; область науки и техники, разрабатывающая и использующая на практике методы и средства преобразования ядерной энергии в тепловую и электрическую. Основу Ядерная энергетика составляют атомные электростанции (АЭС). Источником энергии на АЭС служит ядерный реактор, в котором протекает управляемая цепная реакция деления ядер тяжёлых элементов, преимущественно 235U и 239Pu. При делении ядер урана и плутония выделяется тепловая энергия, которая преобразуется затем в электрическую так же, как на обычных тепловых электростанциях. При истощении запасов органического топлива (угля, нефти, газа, торфа) использование ядерного топлива - пока единственно реальный путь надёжного обеспечения человечества необходимой ему энергией. Рост потребления и производства электроэнергии приводит к тому, что в некоторых странах мира уже ощущается нехватка органического топлива и всё большее число развитых стран начинает зависеть от импорта энергоресурсов. Истощение или недостаток топливных энергоресурсов, удорожание их добычи и транспортирования стали одними из причин так называемого «энергетического кризиса» 70-х гг. 20 в. Поэтому в ряде стран ведутся интенсивные работы по освоению новых высокоэффективных методов получения электроэнергии за счёт использования других источников, и в первую очередь ядерной энергии. [7, 56-57]


Гидроэнергетика

Гидроэнергетика, раздел энергетики, связанный с использованием потенциальной энергии водных ресурсов.

Важной экономической особенностью гидроэнергетических ресурсов является их вечная возобновляемость, не требующая в дальнейшем дополнительных капиталовложений. Электроэнергия, вырабатываемая на ГЭС, в среднем почти в 4 раза дешевле электроэнергии, получаемой от тепловых электростанций. Поэтому использованию гидроэнергетических ресурсов придаётся особое значение при размещении электроёмких производств. Отсутствие необходимости в топливе и более простая технология выработки электроэнергии приводят к тому, что затраты труда на единицу мощности на ГЭС почти в 10 раз меньше, чем на тепловых электростанциях (с учётом добычи топлива и его транспортирования). Высокая производительность труда на ГЭС является одной из основных её экономических особенностей и имеет важнейшее значение при решении задач энергетического строительства в малообжитых и особенно в удалённых районах Севера страны.

ГЭС являются мобильными энергетическими установками, выгодно отличающимися от паротурбинных тепловых электростанций в области регулирования частоты, покрытия растущих пиковых нагрузок, маневрирования мощностью в период ночного снижения нагрузок и в роли аварийного резерва системы. Это особенно важно для энергосистем Европейской части СССР, где электропотребление в течение суток характеризуется большой неравномерностью. [7, 101-102]

Идеи И. Пригожина и их значение для современной науки

Пригожин Илья Романович (25 января 1917, Москва — 28 мая 2003, Брюссель), бельгийский физик и физико-химик русского происхождения, лауреат Нобелевской премии по химии 1977 «за работы по термодинамике необратимых процессов, особенно за теорию диссипативных структур». В Бельгию был привезен родителями из России в раннем детстве.