Смекни!
smekni.com

Курс физики (стр. 114 из 157)

т. е. соотношение неопределенностей (215.1).

Невозможность одновременно точно определить координату и соответствующую проекцию импульса не связана с несовершенством методов измерения или измерительных приборов, а является следствием специфики микрообъектов, отражающей особенности их объективных свойств, а именно двойственной корпускулярно-волновой природы. Соотношение неопределенностей получено при одновременном использовании классических характеристик движения частицы (координаты, импульса) и наличия у нее волновых свойств. Так как в классической механике принимается, что измерение координаты и импульса может быть произведено с любой точностью, то соотношение неопределенностей является, таким образом, квантовым ограничением применимости классической механики к микрообъектам.

Соотношение неопределенностей, отражая специфику физики микрочастиц, позволяет оценить, например, в какой мере можно применять понятия классической механики к микрочастицам, в частности, с какой степенью точности можно говорить о траекториях микрочастиц. Известно, что движение по траектории характеризуется в любой момент времени определенными значениями координат и скорости. Выразим соотношение неопределенностей (215.1) в виде

(215.4)

Из этого выражения следует, что чем больше масса частицы, тем меньше неопределенности ее координаты н скорости и, следовательно, с тем большей точностью можно применять к этой частице понятие траектории. Так, например, уже для пылинки массой 10-12 кг и линейными размерами 10 м, координата которой определена с точностью до 0,01 ее размеров (∆х = 10-8 м), неопределенность скорости, по (215.4), ∆vх = 6,62⋅10-34/(10-8⋅10-12) м/с = 6,62⋅-14 м/с, т. с. не будет сказываться при всех скоростях, с которыми пылинка может двигаться. Таким образом, для макроскопических тел их волновые свойства не играют никакой роли; координата и скорость макротел могут быть одновременно измерены достаточно точно. Это означает, что для описания движения макротел с абсолютной достоверностью можно пользоваться законами классической механики.

Предположим, пучок электронов движется вдоль оси х со скоростью v =

108 м/с, определяемой с точностью до 0,01% (∆vx ≈ 104 м/с). Какова точность определения координаты электрона? По формуле (215.4),

т. е. положение электрона может быть определено с точностью до тысячных долей миллиметра. Такая точность достаточна, чтобы можно было говорить о движении электронов по определенной траектории, иными словами, описывать их движение законами классической механики.

Применим соотношение неопределенностей к электрону, движущемуся в атоме водорода. Допустим, что неопределенность координаты электрона ∆x ≈ 10-10 м (по рядка размеров самого атома, т. е. можно считать, что электрон принадлежит данному атому). Тогда, согласно (215.4),

∆vx = 6,62⋅10-34/(9,11⋅10-31⋅10-10) = 7,27⋅106 м/с. Используя законы классической физики, можно показать, что при движении электрона вокруг ядра по круговой орбите радиуса ≈0,5-10~10 м его скорость v ≈ 2,3⋅106 м/с. Таким образом, неопределенность скорости в несколько раз больше самой скорости. Очевидно, что в данном случае нельзя говорить о движении электрона в атоме по определенной траектории, иными словами, для описания движения электрона в атоме нельзя пользоваться законами классической физики.

В квантовой теории рассматривается также соотношение неопределенностей для энергии Е и времени t, т. е. неопределенности этих величин удовлетворяют условию

(215.5)

Подчеркнем, что ∆Е — неопределенность энергии некоторого состояния системы, ∆t — промежуток времени, в течение которого оно существует. Следовательно, система, имеющая среднее время жизни ∆t, не может быть охарактеризована определенным значением энергии; разброс энергии ∆Е = h/∆t возрастает с уменьшением среднего времени жизни. Из выражения (215.5) следует, что частота излученного фотона также должна иметь неопределенность ∆v =

∆E/h, т. е. линии спектра должны характеризоваться частотой, равной v ± ∆Е/h. Опыт действительно показывает, что все спектральные линии размыты; измеряя ширину спектральной линии, можно оценить порядок времени существования атома в возбужденном состоянии.

§ 216. ВОЛНОВАЯ ФУНКЦИЯ И ЕЕ СТАТИСТИЧЕСКИЙ СМЫСЛ

Экспериментальное подтверждение идеи де Бройля об универсальности корпускулярно-волнового дуализма, ограниченность применения классической механики к микро-объектам, диктуемая соотношением неопределенностей, а также противоречие целого ряда экспериментов с применяемыми в начале XX в. теориями привели к новому этапу развития квантовой теории — созданию квантовой механики, описывающей законы движения и взаимодействия микрочастиц с учетом их волновых свойств. Ее создание и развитие охватывает период с 1900 г. (формулировка Плавком квантовой гипотезы; см. § 200) до 20-х годов XX в.; оно связано прежде всего с работами австрийского физика Э. Шредингера (1887—1961), немецкого физика В. Гейзенберга и английского физика П. Дирака (1902—1984).

На данном этапе развития возникли новые принципиальные проблемы, в частности проблема физической природы волн де Бройля. Для выяснения этой проблемы сравним дифракцию световых волн и микрочастиц. Дифракционная картина, наблюдаемая для световых волн, характеризуется тем, что в результате наложения дифрагирующих волн друг на друга в различных точках пространства происходит усиление или ослабление амплитуды колебаний. Согласно волновым представлениям о природе света, интенсивность дифракционной картины пропорциональна квадрату амплитуды световой волны. По представлениям фотонной теории, интенсивность определяется числом фотонов, попадающих в данную точку дифракционной картины. Следовательно, число фотонов в данной точке дифракционной картины задается квадратом амплитуды световой волны, в то время как для одного фотона квадрат амплитуды определяет вероятность попадания фотона в ту или иную точку.

Дифракционная картина, наблюдаемая для микрочастиц, также характеризуется неодинаковым распределением потоков микрочастиц, рассеянных или отраженных по различным направлениям, — в одних направлениях наблюдается большее число частиц, чем в других. Наличие максимумов в дифракционной картине с точки зрения волновой теории означает, что эти направления соответствуют наибольшей интенсивности волн де Бройля. С другой стороны, интенсивность волн де Бройля оказывается больше там, где имеется большее число частиц, т. е. интенсивность волн де Бройля в данной точке пространства определяет число частиц, попавших в эту точку. Таким образом, дифракционная картина для микрочастиц является проявлением статистической (вероятностной) закономерности, согласно которой частицы попадают в те места, где интенсивность волн де Бройля наибольшая.

Необходимость вероятностного подхода к описанию микрочастиц является важнейшей отличительной особенностью квантовой теории. Можно ли волны де Бройля истолковывать как волны вероятности, т. е. считать, что вероятность обнаружить микрочастицу в различных точках пространства меняется по волновому закону? Такое толкование волн де Бройля уже неверно хотя бы потому, что тогда вероятность обнаружить частицу в некоторых точках пространства может быть отрицательна, что не имеет смысла.

Чтобы устранить эти трудности, немецкий физик М. Борн (1882—1970) в 1926 г. предположил, что по волновому закону меняется не сама вероятность, а величина, названная амплитудой вероятности и обозначаемая Ψ(х, у, z, t). Эту величину называют также волновой функцией (или Ψ-функцией). Амплитуда вероятности может быть комплексной, и вероятность W пропорциональна квадрату ее модуля:

(216.1)

(|Ψ|2 = ΨΨ*, Ψ* — функция, комплексно сопряженная с Ψ). Таким образом, описание состояния микрообъекта с помощью волновой функции имеет статистический, вероятностный характер: квадрат модуля волновой функции (квадрат модуля амплитуды волн де Бройля) определяет вероятность нахождения частицы в момент времени г в области с координатами х и x+dx, у и y+dy, z и z+dz.

Итак, в квантовой механике состояние микрочастиц описывается принципиально по-новому — с помощью волновой функции, которая является основным носителем информации об их корпускулярных и волновых свойствах.

Вероятность нахождения частицы в элементе объемом dV равна

(216.2)

Величина

(квадрат модуля Ψ-функции) имеет смысл плотности вероятности, т. е. определяет вероятность нахождения частицы в единичном объеме в окрестности точки с координатами х, у, z. Таким образом, физический смысл имеет не сама Ψ-функция, а квадрат ее модуля |Ψ|2, которым задается интенсивность волн де

Бройля.

Вероятность найти частицу в момент времени е в конечном объеме V, согласно теореме сложения вероятностей, равна

Так как |Ψ|2dF определяется как вероятность, то необходимо волновую функцию Ψ нормировать так, чтобы вероятность достоверного события обращалась в единицу, если за объем V принять бесконечный объем всего пространства. Это означает, что при данном условии частица должна находиться где-то в пространстве. Следовательно, условие нормировки вероятностей