Смекни!
smekni.com

Курс физики (стр. 4 из 157)

Рис. 8 Рис. 9

Таким образом, связь между линейными (длина пути s, пройденного точкой по дуге окружности радиуса R, линейная скорость v, тангенциальное ускорение аτ, нормальное ускорение аn) и угловыми величинами (угол поворота ϕ, угловая скорость ω, угловое ускорение ε) выражается следующими формулами:

В случае равнопеременного движения точки по окружности (ε—const)

где ω0 — начальная угловая скорость.

ЗАДАЧИ

1.1.Зависимость пройденного телом пути от времени задается уравнением s=A+Bt+Ct2+Dt3(С=0,1 м/с2, D=0,03 м/с3). Определить: 1) время после начала

движения, через которое ускорение а тела будет равно 2 м/с2;

2) среднее ускорение <а> тела за этот промежуток времени. [1) 10 с; 2) 1,1 м/с2]

1.2. Пренебрегая сопротивлением воздуха, определить угол, под которым тело брошено к горизонту, если максимальная высота подъема тела равна 1/4 дальности его полета. [45°]

1.3.Колесо радиусом R = 0,1 м вращается так, что зависимость угловой скорости от времени задается уравнением ω = 2At + 5Bt4 (А = 2 рад/с2 и В = 1 рад/с5). Определить полное ускорение точек обода колеса через t = 1 с после начала вращения и число оборотов, сделанных колесом за это время. [а=8,5 м/с2; N = 0,48]

1.4.Нормальное ускорение точки, движущейся по окружности радиусом г=4 м, задается уравнением an=A+Bt+Ct2(A = 1 м/с2, B = 6 м/с2, С = 3 м/с2). Определить: 1) тангенциальное ускорение точки; 2) путь, пройденный точкой за время t1=5 с после начала движения; 3) полное ускорение для момента времени t2=1 с. [1) 6 м/с2; 2) 85 м; 3) 6,32 м/с2]

1.5.Частота вращения колеса при равнозамедленном движении за t = 1 мин уменьшилась от 300 до 180 мин-1. Определить: 1) угловое ускорение колеса; 2) число полных оборотов, сделанных колесом за это время. [1) 0,21 рад/с2; 2) 240]

1.6.Диск радиусом R =10 см вращается вокруг неподвижной оси так, что зависимость угла поворота радиуса диска от времени задается уравнением ϕ=A+3t+Ct2+Dt3(B = 1 рад/с, С = 1 рад/с2, D = 1 рад/с3). Определить для точек на ободе колеса к концу второй секунды после начала движения: 1) тангенциальное ускорение %; 2) нормальное ускорение аn; 3) полное ускорение а. [1) 1,4 м/с2; 2) 28,9 м/с2; 3) 28,9 м/с2]

ГЛАВА 2 ДИНАМИКА МАТЕРИАЛЬНОЙ ТОЧКИ И ПОСТУПАТЕЛЬНОГО ДВИЖЕНИЯ

ТВЕРДОГО ТЕЛА

§ 5. ПЕРВЫЙ ЗАКОН НЬЮТОНА. МАССА. СИЛА

Динамика является основным разделом механики, в ее основе лежат три закона Ньютона, сформулированные им в 1687 г. Законы Ньютона играют исключительную роль в механике и являются (как и все физические законы) обобщением результатов огромного человеческого опыта. Их рассматривают как систему взаимосвязанных законов и опытной проверке подвергают не каждый отдельный закон, а всю систему в целом.

Первый закон Ньютона: всякая материальная точка (тело) сохраняет состояние покоя или равномерного прямолинейного движения до тех пор, пока воздействие со стороны других тел не заставит ее изменить это состояние. Стремление тела сохранять состояние покоя или равномерного прямолинейного движения называется инертностыо. Поэтому первый закон Ньютона называют также законом инерции.

Механическое движение относительно, и его характер зависит от системы отсчета. Первый закон Ньютона выполняется не во всякой системе отсчета, а те системы, по отношению к которым он выполняется, называются инерциальными системами отсчета. Инерциальной системой отсчета является такая система отсчета, относительно которой материальная точка, свободная от внешних воздействий, либо покоится, либо движется равномерно и прямолинейно. Первый закон Ньютона утверждает существование инерциальных систем отсчета.

Опытным путем установлено, что инерциальной можно считать гелиоцентрическую (звездную) систему отсчета (начало координат находится в центре Солнца, а оси проведены в направлении определенных звезд). Система отсчета, связанная с Землей, строго говоря, неинерциальна, однако эффекты, обусловленные ее неинерциальностью (Земля вращается вокруг собственной оси и вокруг Солнца), при решении многих задач пренебрежимо малы, и в этих случаях ее можно считать инерциальной.

Из опыта известно, что при одинаковых воздействиях различные тела неодинаково изменяют скорость своего движения, т. е., иными словами, приобретают различные ускорения. Ускорение зависит не только от величины воздействия, но и от свойств самого тела (от его массы).

Масса тела — физическая величина, являющаяся одной из основных характеристик материи, определяющая ее инерционные (инертная масса) и гравитационные (гравитационная масса) свойства. В настоящее время можно считать доказанным, что инертная и гравитационная массы равны друг другу (с точностью, не меньшей 10 их значения).

Чтобы описывать воздействия, упоминаемые в первом законе Ньютона, вводят понятие силы. Под действием сил тела либо изменяют скорость движения, т. е приобретают ускорения (динамическое проявление сил), либо деформируются, т. е, изменяют свою форму и размеры (статическое проявление сил). В каждый момент времени сила характеризуется числовым значением, направлением в пространств и точкой приложения. Итак, сила —это векторная величина, являющаяся мерой механического воздействия на тело со стороны других тел или полей, в результате которого тело приобретает ускорение или изменяет свою форму и размеры.

§ 6. ВТОРОЙ ЗАКОН НЬЮТОНА

Второй закон Ньютона — основной закон динамики поступательного движения отвечает на вопрос, как изменяется механическое движение материальной точки (тела под действием приложенных к ней сил.

Если рассмотреть действие различных сил на одно и то же тело, то оказывается, что ускорение, приобретаемое телом, всегда прямо пропорционально равнодействующей приложенных сил:

(6.1)

При действии одной и той же силы на тела с разными массами их ускорения оказываются различными, а именно

(6.2)

Используя выражения (6.1) и (6.2) и учитывая, что сила и ускорение — величины векторные, можем записать

(6.3)

Соотношение (6.3) выражает второй закон Ньютона: ускорение, приобретаемое материальной точкой (телом), пропорционально вызывающей его силе, совпадает с нею по направлению и обратно пропорционально массе материальной точки (тела).

В СИ коэффициент пропорциональности k= 1. Тогда

или

(6.4)

Учитывая, что масса материальной точки (тела) в классической механике есть величина постоянная, в выражении (6.4) ее можно внести под знак производной:

(6.5)

Векторная величина

P = mv (6.6)

численно равная произведению массы материальной точки на ее скорость и имеющая направление скорости, называется импульсом (количеством движения) этой материальной точки.

Подставляя (6.6) в (6.5), получим

(6.7)

Это выражение — более общая формулировка второго закона Ньютона: скорость изменения импульса материальной точки равна действующей на нее силе. Выражение (6.7) называется уравнением движения материальной точки.

Единица силы в СИ — ньютон (Н): 1 Н — сила, которая массе 1 кг сообщает ускорение 1 м/с2 в направлении действия силы:

Второй закон Ньютона справедлив только в инерциальных системах отсчета. Первый закон Ньютона можно получить из второго. Действительно, в случае равенства нулю равнодействующей сил (при отсутствии воздействия на тело со стороны других тел) ускорение (см. (6.3)) также равно нулю. Однако первый закон Ньютона рассматривается как самостоятельный закон (а не как следствие второго закона), так как именно он утверждает существование инерциальных систем отсчета, в которых только и выполняется уравнение (6.7).

В механике большое значение имеет принцип независимости действия сил: если на материальную точку действует одновременно несколько сил, то каждая из этих сил сообщает материальной точке ускорение согласно второму закону Ньютона, как будто других сил не было. Согласно этому принципу, силы и ускорения можно разлагать на составляющие, использование которых приводит к существенному упрощению решения задач. Например, на рис. 10 действующая сила F = ma разложена на два компонента: тангенциальную силу Fτ (направлена по касательной к траектории) и нормальную Fn (направлена по нормали к центру кривизны). сать:

Если на материальную точку действует одновременно несколько сил, то, согласно принципу независимости действия сил, под F во втором законе Ньютона понимают результирующую силу.