откуда, учитывая соотношение (129.3), найдем
т. е. токи в обмотках обратно пропорциональны числу витков в этих обмотках. Если N2/N1 > 1, то имеем дело с повышающий трансформатором, увеличивающим переменную э.д.с. и понижающим ток (применяются, например, для передачи электроэнергии на большие расстояния, так как в данном случае потери на джоулеву теплоту, пропорциональные квадрату силы тока, снижаются); если N2/N1 < 1, то имеем дело с понижающим трансформатором, уменьшающим э.д.с. и повышающим ток (применяются, например, при электросварке, так как для нее требуется большой ток при низком напряжении).
Мы рассматривали трансформаторы, имеющие только две обмотки. Однако транс форматоры, используемые в радиоустройствах, имеют 4—5 обмоток, обладающих разными рабочими напряжениями. Трансформатор, состоящий из одной обмотки, называется автотрансформатором. В случае повышающего автотрансформатора э.д.с. подводится к части обмотки, а вторичная э.д.с. снимается со всей обмотки. В понижающем автотрансформаторе напряжение сети подается на всю обмотку, а вторичная э.д.с. снимается с части обмотки.
§ 130. ЭНЕРГИЯ МАГНИТНОГО ПОЛЯ
Проводник, по которому протекает электрический ток, всегда окружен магнитным полем, причем магнитное поле появляется и исчезает вместе с появлением и исчезновением тока. Магнитное поле, подобно электрическому, является носителем энергии. Естественно предположить, что энергия магнитного поля равна работе, которая затрачивается током на создание этого поля.
Рассмотрим контур индуктивностью L, по которому течет ток I. С данным контуром сцеплен магнитный поток (см. (126.1)) Φ = LI, причем при изменении тока на dI магнитный поток изменяется на dФ = LdI. Однако для изменения магнитного потока на величину dФ (см. § 121) необходимо совершить работу dA = IdΦ = LIdI. Тогда работа по созданию магнитного потока Ф будет равна
Следовательно, энергия магнитного поля, связанного с контуром,
(130.1)
Исследование свойств переменных магнитных полей, в частности распространения электромагнитных волн, явилось доказательством того, что энергия магнитного поля локализована в пространстве. Это соответствует представлениям теории поля.
Энергию магнитного поля можно представить как функцию величин, характеризующих это поле в окружающем пространстве. Для этого рассмотрим частный случай — однородное магнитное поле внутри длинного соленоида. Подставив в формулу (130.1) выражение (126.2), получим
Так как I = Bl N2/N1 > 1N) (см. (119.2)) и B = N2/N1 > 1 (см. (109.3)), то
(130.2)
где Sl = V— объем соленоида.
Магнитное поле соленоида однородно и сосредоточено внутри него, поэтому энергия (см. (130.2)) заключена в объеме соленоида и распределена в нем с постоянной объемной плотностью
(130.3)
Выражение (130.3) для объемной плотности энергии магнитного поля имеет вид, аналогичный формуле (95.8) для объемной плотности энергии электростатического поля, с той разницей, что электрические величины заменены в нем магнитными. Формула (130.3) выведена для однородного поля, но она справедлива и для неоднородных полей. Выражение (130.3) справедливо только для сред, для которых зависимость В от Н линейная, т. е. оно относится только к пара- и диамагнетикам (см. § 132).
• Запишите и проанализируйте выражения для объемной плотности энергии электростатического и магнитного полей. Чему равнообъемная плотность энергии магнитного поля?
• Напряженность магнитного поля возросла в два раза. Как изменилась объемная плотность энергии электромагнитного поля?
• Приведите соотношение между токами нав первичной и вторичной обмотках повышающего трансформатора.
ЗАДАЧИ
15.1. Кольцо из алюминиевого провода (ρ = 26 нОм-м) помещено в магнитное поле перпендикулярно линиям магнитной индукции. Диаметр кольца 20 см, диаметр провода 1 мм. Определить скорость изменения магнитного поля, если сила тока в кольце 0,5 А. [0,33 Тл/с]
15.2. В однородном магнитном поле, индукция которого 0,5 Тл, равномерно с частотой 300 мин-1 вращается катушка, содержащая 200 витков, плотно прилегающих друг к другу. Площадь поперечного сечения катушки 100 см2. Ось вращения перпендикулярна оси катушки и направлению магнитного поля. Определить максимальную э.д.с., индуцируемую в катушке. [31,4 В]
15.3. Определить, сколько витков проволоки, вплотную прилегающих друг к другу, диаметром 0,3 мм с изоляцией ничтожно малой толщины надо намотать на картонный цилиндр диаметром 1 см, чтобы получить однослойную катушку с индуктивностью 1 мГн. [3040]
15.4. Определить, через сколько времени сила тока замыкания достигнет 0,98 пре дельного значения, если источник тока замыкают на катушку сопротивлением 10 Ом и индуктивностью 0,4 Гн. [0,16 с] 15.5.
15.5. Два соленоида (индуктивность одного L1=0,36 Гн, второго L2 = 0,64 Гн) одинаковой длины и практически равного сечения вставлены один в другой. Определить взаимную индуктивность соленоидов. [0,48 Гн] 15.8.
15.6. Автотрансформатор, понижающий напряжение с U1=5,5 кВ до U2=220 В, содержит в первичной обмотке N1 = 1500 витков. Сопротивление вторичной обмотки R2 = 2 Ом. Сопротивление внешней цепи (в сети пониженного напряжения) R = 13 Ом. Пренебрегая сопротивлением первичной обмотки, определить число витков во вторичной обмотке трансформатора. [68]
§ 131. МАГНИТНЫЕ МОМЕНТЫ ЭЛЕКТРОНОВ И АТОМОВ
Рассматривая действие магнитного поля на проводники с током в на движущиеся заряды, мы не интересовались процессами, происходящими в веществе. Свойства среды учитывались формально с помощью магнитной проницаемости µ. Для того чтобы разобраться в магнитных свойствах сред и их влиянии на магнитную индукцию, необходимо рассмотреть действие магнитного поля на атомы и молекулы вещества.
Опыт показывает, что все вещества, помещенные в магнитное поле, намагничиваются. Рассмотрим причину этого явления с точки зрения строения атомов и молекул, положив в основу гипотезу Ампера (см. § 109), согласно которой в любом теле существуют микроскопические токи, обусловленные движением электронов в атомах и молекулах.
Для качественного объяснения магнитных явлений с достаточным приближением можно считать, что электрон движется в атоме по круговым орбитам. Электрон, движущийся по одной из таких орбит, эквивалентен круговому току, поэтому он обладает орбитальным магнитным моментом (см. (109.2)) pm = ISn, модуль которого
(131.1)
где I = ev — сила тока, v — частота вращения электрона по орбите, S — площадь орбиты. Если электрон движется по часовой стрелке (рис. 187), то ток направлен против часовой стрелки и вектор рm, (в соответствии с правилом правого винта) направлен перпендикулярно плоскости орбиты электрона, как указано на рисунке.
Рис. 187
С другой стороны, движущийся по орбите электрон обладает механиче-
ским моментом импульса Lе, модуль которого, согласно (19.1),
(131.2)
где v = 2πvr, πr2 = S. Вектор Le (его направление также определяется по правилу правого винта) называется орбитальным механическим моментом электрона.
Из рис. 187 следует, что направления pm и Lc противоположны, поэтому, учитывая выражения (131.1) и (131.2), получим
(131.3)
где величина
(131.4)
называется гиромагнитным отношением орбитальных моментов (общепринято писать со знаком «—», указывающим на то, что направления моментов противоположны). Это отношение, определяемое универсальными постоянными, одинаково для любой орбиты, хотя для разных орбит значения v и r различны. Формула (131.4) выведена для круговой орбиты, но она справедлива и для эллиптических орбит.
Экспериментальное определение гиромагнитного отношения проведено в опытах Эйнштейна и де Гааза[27] (1915), которые наблюдали поворот свободно подвешенного на тончайшей кварцевой нити железного стержня при его намагничении во внешнем магнитном поле (по обмотке соленоида пропускался переменный ток с частотой, равной частоте крутильных колебаний стержня). При исследовании вынужденных крутильных колебаний стержня определялось гиромагнитное отношение, которое оказалось равным —(е/m). Таким образом, знак носителей, обусловливающих молекулярные токи, совпадал со знаком заряда электрона, а гиромагнитное отношение оказалось в два раза большим, чем введенная ранее величина g (см. (131.4)). Для объяснения этого результата, имевшего большое значение для дальнейшего развития физики, было предположено, а впоследствии доказано, что кроме орбитальных моментов (см. (131.1) и (131.2)) электрон обладает собственным механическим моментом импульса Les, называемым спином. Считалось, что спин обусловлен вращением электрона вокруг своей оси, что привело к целому ряду противоречий. В настоящее время установлено, что спин является неотъемлемым свойством электрона, подобно его заряду и массе. Спину электрона Les соответствует собственный (спиновый) магнитный момент рms, пропорциональный Les и направленный в противоположную сторону: