Как показывает опыт, в несильных полях намагниченность прямо пропорциональна напряженности поля, вызывающего намагничение, т. е.
(133.6)
где χ — безразмерная величина, называемая магнитной восприимчиво-
стью вещества. Для диамагнетиков χ отрицательна (поле молекулярных токов противоположно внешнему), для парамагнетиков — положительна (поле молекулярных токов совпадает с внешним).
Используя формулу (133.6), выражение (133.4) можно записать в виде
откудаБезразмерная величина
(133.7) (133.8) представляет собой магнитную проницаемость вещества. Подставив (133.8) в
(133.7), придем к соотношению (109.3) В = µ0µН, которое ранее постулировалось.
Так как абсолютное значение магнитной восприимчивости для диа- и парамагнетиков очень мало (порядка 10-4 —10-6), то для них µ незначительно отличается от единицы. Это просто понять, так как магнитное поле молекулярных токов значительно слабее намагничивающего поля. Таким образом, для диамагнетиков χ < 0 и µ <1, для парамагнетиков χ > 0 и µ > 1.
Закон полного тока для магнитного поля в веществе (теорема о циркуляции вектора В) является обобщением закона (118.1):
где I и I' — соответственно алгебраические суммы макротоков (токов
проводимости) и микротоков (молекулярных токов), охватываемых произвольным замкнутым кон туром L. Таким образом, циркуляция вектора магнитной индукции В по произвольному замкнутому контуру равна алгебраической сумме токов проводимости и молекулярных токов, охватываемых этим контуром, умноженной на магнитную постоянную. Вектор В, таким образом, характеризует результирующее поле, созданное как макроскопическими токами в проводниках (токами проводимости), так и микроскопическими токами в магнетиках, поэтому линии вектора магнитной индукции В не имеют источников и являются замкнутыми.
Из теории известно, что циркуляция намагниченности J по произвольному замкнутому контуру L равна алгебраической сумме молекулярных токов, охватываемых этим контуром:
Тогда закон полного тока для магнитного поля в веществе можно записать также в виде
(133.9)
где I, подчеркнем это еще раз, есть алгебраическая сумма токов прово-
димости.
Выражение, стоящее в скобках в (133.9), согласно (133.5), есть не что иное, как введенный ранее вектор Н напряженности магнитного поля. Итак, циркуляция вектора Н по произвольному замкнутому контуру L равна алгебраической сумме токов проводимости, охватываемых этим контуром:
(133.10)
Выражение (133.10) представляет собой теорему о циркуляции вектора Н.
§ 134. УСЛОВИЯ НА ГРАНИЦЕ РАЗДEЛА ДВУХ МАГНЕТИКОВ
Установим связь для векторов В и Н на границе раздела двух однородных магнетиков (магнитные проницаемости µ1 и µ2 при отсутствии на границе тока проводимости.
Построим вблизи границы раздела магнетиков 1 и 2 прямой цилиндр ничтожно малой высоты, одно основание которого находится в первом магнетике, другое — во втором (рис. 190). Основания AS настолько малы, что в пределах каждого из них вектор В одинаков. Согласно теореме Гаусса (120.3),
(нормали n и n' к основаниям цилиндра направлены противоположно). Поэтому
(134.1)
Рис. 190
Заменив, согласно B = µ0µH , проекции вектора В проекциями вектора Н, умноженными на µ0µ, получим
(134.2)
Вблизи границы раздела двух магнетиков 1 и 2 построим небольшой замкнутый прямоугольный контур ABCDA длиной l, ориентировав его так, как показано на рис. 191.
Рис. 191
Согласно теореме (133.10) о циркуляции вектора Н,
(токов проводимости на границе раздела нет), откуда
(знаки интегралов по АВ и CD разные, так как пути интегрирования противоположны, а интегралы по участкам ВС и DA ничтожно малы). Поэтому
(134.3)
Заменив, согласно B = µ0µH, проекции вектора Н проекциями вектора В, деленными на µ0µ, получим
(134.4)
Таким образом, при переходе через границу раздела двух магнетиков нормальная составляющая вектора В (Bn и тангенциальная составляющая вектора H (Hτ) изменяются непрерывно (не претерпевают скачка), а тангенциальная составляющая вектора В (Вτ) и нормальная составляющая вектора Н (Нn) претерпевают скачок.
Из полученных условий (134.1)—(134.4) для составляющих векторов В и Н следует, что линии этих векторов испытывают излом (преломляются). Как и в случае диэлектриков (см. § 90), можно найти закон преломления линий В (а значит, и линий Н):
(134.5)
Из этой формулы следует, что, входя в магнетик с большей магнитной проницаемостью, линии В и Н удаляются от нормали.
§ 135. ФЕРРОМАГНЕТИКИ И ИХ СВОЙСТВА
Помимо рассмотренных двух классов веществ — диа- и парамагнетиков, называемых слабомагнитнымн веществами, существуют еще сильномагнитные вещества — ферромагнетики — вещества, обладающие спонтанной намагниченностью, т. е. они намагничены даже при отсутствии внешнего магнитного поля. К ферромагнетикам кроме основного их представителя — железа (от него и идет название «ферромагнетизм») — от носятся, например, кобальт, никель, гадолиний, их сплавы и соединения.
Ферромагнетики помимо способности сильно намагничиваться обладают еще и другими свойствами, существенно отличающими их от диа- и парамагнетиков. Если для слабомагнитных веществ зависимость J от Н линейна (см. (133.6) и рис. 192), то для ферромагнетиков эта зависимость, впервые изученная в 1878 г. методом баллистического гальванометра для железа русским физиком А. Г. Столетовым (1839—1896), является довольно сложной. По мере возрастания Н намагниченность J сначала растет быстро, затем медленнее и, наконец, достигается так называемое магнитное насыщение Jнас уже не зависящее от напряженности поля. Подобный характер зависимости J от Н можно объяснить тем, что по мере увеличения намагничивающего поля увеличивается степень ориентации молекулярных магнитных моментов по полю, однако этот процесс начнет замедляться, когда остается все меньше и меньше неориентированных моментов, и, наконец, когда все моменты будут ориентированы по полю, дальнейшее увеличение J прекращается и наступает магнитное насыщение.
Рис. 192
Магнитная индукция B = µ0(H + J) (см. (133.4)) в слабых полях растет быстро с ростом Н вследствие увеличения J, а в сильных полях, поскольку второе слагаемое постоянно (J = Jнас), В растет с увеличением Н по линейному закону (рис. 193).
Рис. 193
Существенная особенность ферромагнетиков — не только большие значения µ (на пример, для железа — 5000, для сплава супермаллоя — 800 000!), но и зависимость µ от Н (рис. 194). Вначале µ растет с увеличением Н, затем, достигая максимума, начинает уменьшаться, стремясь в случае сильных полей к 1 (µ = B/(µ0H) = l + J/Н, поэтому при J = Jнас = const с ростом Н отношение J/H → 0, а µ → 1).
Характерная особенность ферромагнетиков состоит также в том, что для них зависимость J от H (а следовательно, и В от Н) определяется предысторией намагничения ферромагнетика. Это явление получило название магнитного гистерезиса. Если намагнитить ферромагнетик до насыщения (точка 1, рис. 195), а затем начать уменьшать напряженность Н намагничивающего поля, то, как показывает опыт, уменьшение J описывается кривой 1—2, лежащей выше кривой 1- 0. При Н= 0 J отличается от нуля, т. e. в ферромагнетике наблюдается остаточное намагничение Joc. С наличием остаточного намагничения связано существование постоянных магнитов. Намагничение обращается в нуль под действием поля Нс, имеющего направление, противоположное полю, вызвавшему намагничение. Напряженность Hc называется коэрцитивной силой.
Рис. 194 Рис. 195
При дальнейшем увеличении противоположного поля ферромагнетик перемагничивается (кривая 3—4), и при H = - Hнас достигается насыщение (точка 4). Затем ферромагнетик можно опять размагнитить (кривая 4—5—6) и вновь перемагнитить до насыщения (кривая 6—1).
Таким образом, при действии на ферромагнетик переменного магнитного поля намагниченность J изменяется в соответствии с кривой 1—2—3—4—5— 6—1, которая называется петлей гистерезиса (от греч. «запаздывание»). Гистерезис приводит к тому, что намагничение ферромагнетика не является однозначной функцией H, т. е. одному и тому же значению H соответствует несколько значений J