(140.1)
где А — максимальное значение колеблющейся величины, называемое амплитудой колебания, ω0 — круговая (циклическая) частота, ϕ — начальная фаза колебания в момент времени t = 0, (ω0t + ϕ) — фаза колебания в момент времени t. Фаза колебания определяет значение колеблющейся величины в данный момент времени. Так как косинус изменяется в пределах от +1 до - 1, то s может принимать значения от + А до - А.
Определенные состояния системы, совершающей гармонические колебания, повторяются через промежуток времени Т, называемый периодом колебания, за который фаза колебания получает приращение 2π, т. е.
откуда
(140.2)
Величина, обратная периоду колебаний,
(140.3)
т. е. число полных колебаний, совершаемых в единицу времени, называется частотой колебаний. Сравнивая (140.2) и (140.3), получим
Единица частоты — герц (Гц): 1 Гц — частота периодического процесса, при которой за 1 с совершается один цикл процесса.
Запишем первую и вторую производные по времени от гармонически колеблющейся величины s:
(140.4) (140.5)
т. е. имеем гармонические колебания с той же циклической частотой. Амплитуды величин (140.4) и (140.5) соответственно равны Аω0 и Аω20. Фаза величины (140.4) отличается от фазы величины (140.1) на π/2, а фаза величины (140.5) отличается от фазы величины (140.1) на π. Следовательно, в моменты времени, когда s = 0, ds/dt приобретает наибольшие значения; когда же s достигает максимального отрицательного значения, то d2s/dt2 приобретает наибольшее положительное значение (рис. 198).
Из выражения (140.5) следует дифференциальное уравнение гармонических колебаний
(140.6)
(где s = A cos (ω0t + ϕ)). Решением этого уравнения является выражение
(140.1).
Рис. 198
Гармонические колебания изображаются графически методом вращающегося вектора амплвтуды, или методом векторных диаграмм. Для этого из произвольной точки О, выбранной на оси х, под углом ϕ, равным начальной фазе колебания, откладывается вектор А, модуль которого равен амплитуде А рассматриваемого колебания (рис. 199).
Рис. 199
Если этот вектор привести во вращение с угловой скоростью ω0, равной циклической частоте колебаний, то проекция конца вектора будет перемещаться по оси х и принимать значения от - А до +А, а колеблющаяся величина будет изменяться со временем по закону s = Acos(ω0t + ϕ). Таким образом, гармоническое колебание можно представить проекцией на некоторую произвольно выбранную ось вектора амплитуды А, отложенного из произвольной точки оси под углом ϕ, равным начальной фазе, и вращающегося с угловой скоростью ω0 вокруг этой точки.
В физике часто применяется другой метод, который отличается от метода вращающегося вектора амплитуды лишь по форме. В этом методе колеблющуюся величину представляют комплексным числом. Согласно формуле Эйлера, для комплексных чисел
где i = −1 — мнимая единица. Поэтому уравнение гармонического колебания (140.1) можно записать в комплексной форме:(140.8)
Вещественная часть выражения (140.8)
представляет собой гармоническое колебание. Обозначение Re вещественной части условимся опускать и (140.8) будем записывать в виде
В теории колебаний принимается, что колеблющаяся величина s равна вещественной части комплексного выражения, стоящего в этом равенстве справа.
Пусть материальная точка совершает прямолинейные гармонические колебания вдоль оси координат x около положения равновесия, принятого за начало координат. Тогда зависимость координаты х от времени t задается уравнением, аналогичным уравнению (140.1), где s = х:
(141.1)
Согласно выражениям (140.4) и (140.5), скорость v и ускорение а колеблющейся точки соответственно равны
(141.2)
Сила F = ma, действующая на колеблющуюся материальную точку массой т, с учетом (141.1) и (141.2) равна
Следовательно, сила пропорциональна смещению материальной точки из положения равновесия и направлена в противоположную сторону (к положению равновесия).
Кинетическая энергия материальной точки, совершающей прямолинейные гармонические колебания, равна
или(141.3) (141.4)
Потенциальная энергии материальной точки, совершающей гармонические колебания под действием упругой силы F, равна
или(141.5) (141.6)
Сложив (141.3) и (141.5), получим формулу для полной энергии:
(141.7)
Полная энергия остается постоянной, так как при гармонических колебаниях справедлив закон сохранения механической энергии, поскольку упругая сила консервативна. Из формул (141.4) и (141.6) следует, что Т и П изменяются с частотой 2ω0, т. е. с частотой, которая в два раза превышает частоту гармонического колебания. На рис. 200 представлены графики зависимости х, Т и П от времени. Так как 〈sin2α〉 = 〈cos2 α〉 = 1/2, то из формул (141.3), (141.5) и (141.7) следует, что 〈Т〉 = 〈П〉 = 1/2Е.
Рис. 200
§ 142. ГАРМОНИЧЕСКИЙ ОСЦИЛЛЯТОР. ПРУЖИННЫЙ, ФИЗИЧЕСКИЙ И МАТЕМАТИЧЕСКИЙ МАЯТНИКИ
Гармоническим осциллятором называется система, совершающая колебания, описываемые уравнением вида (140.6):
(142.1)
Колебания гармонического осциллятора являются важным примером периодического движения и служат точной или приближенной моделью во многих задачах классической и квантовой физики. Примерами гармонического осциллятора являются пружинный, физический и математический маятники, колебательный контур (для токов и напряжений столь малых, что элементы контура можно было бы считать линейными; см. §146).
1. Пружинный маятник — это груз массой т, подвешенный на абсолютно упругой пружине в совершающий гармонические колебания под действием упругой силы F = - kx, где k — жесткость пружины. Уравнение движения маятника
тхɻ = - kx
или
Из выражений (142.1) и (140.1) следует, что пружинный маятник совершает гармонические колебания по закону х = A cos(ω0t + ϕ) с циклической частотой
и периодом(142.2) (142.3)
Формула (142.3) справедлива для упругих колебаний в пределах, в которых выполняется закон Гука (см. (21.3)), т. с. когда масса пружины мала по сравнению с массой тела. Потенциальная энергия пружинного маятника, согласно (141.5) и (142.2), равна
3. Физический маятник — это твердое тело, совершающее под действием силы тяжести колебания вокруг неподвижной горизонтальной оси, проходящей через точку О, не совпадающую с центром масс С тела (рис. 201).
Рис. 201
Если маятник отклонен из положения равновесия на некоторый угол α, то в соответствии с уравнением динамики вращательного движения твердого тела (18.3) момент М возвращающей силы можно записать в виде