ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ
Государственное образовательное учреждение высшего профессионального образования
ЧИТИНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ
(ЧитГУ)
Институт технологических и транспортных систем
(ИТиТС)
Заочный факультет
Кафедра физики и техники связи
(ФиТС)
РАСЧЕТ ТЕХНИЧЕСКИХ ХАРАКТЕРИСТИК
СВЕТОДИОДНОГО МОДУЛЯ ДЛЯ ИСПОЛЬЗОВАНИЯ
ОСВЕЩЕНИЯ САДОВОГО УЧАСТКА
Курсовой проект
по дисциплине: «Оптоэлектронные и квантовые
приборы и устройства»
Выполнил: ст. гр. ТКз-05
Антипов Э.П.
Проверил: доцент
кафедры ФиТС
Цыпылов Ю.А.
Чита 2010
Содержание
Введение………………………………………………………………………….3
1 Теоретическая часть………………………….…………..……………..4
2 Основные характеристики и параметры светодиодов……………….7
3 Расчет и проектирование ……………………………………………...8
4 Практическая часть……………………….…………....……………...21
5 Принципиальная схема……………………………………………….26
Заключение………………………………………………….…..……...………28
Список использованных источников…………...………………………….....29
Введение
С момента изобретения электричества, остро стоит проблема его экономии. Экономия электрической энергии ежегодно позволяет значительно снизить расходы в любом масштабе, будь то отдельная квартира, предприятие, или даже государство.
Отдельно стоит проблема снижения энергопотребления в устройствах мобильных, не привязанных в электрической сети, и питающихся от автономного источника питания. Запас энергии в таком источнике питания далеко не бесконечен, и снижение нагрузки, позволяет продлить время автономной работы, тем самым расширить сферу применения прибора.
Наиболее перспективными источниками излучения для оптоэлектроники являются светодиоды. Такими их делают малые габариты и масса (излучающие площади 0,2...0,1 мм 52 0 и менее), большой срок службы, измеряемый годами и даже десятками лет (10 54 0...10 55 0 ч), высокое быстродействие, не уступающее интегральным схемам (10 5-9 0...10 5-5 0 с), низкие рабочие напряжения (1,6...2,5 В), малая потребляемая мощность (20...600 мВт), возможность получения излучения заданного спектрального состава (от синего до красного в видимой части спектра и ближнего инфракрасного излучения). Они используются в качестве источника излучения для управления фотоприёмниками в оптронах, для представления цифро-буквенной информации в калькуляторах и дисплеях, для ввода информации в компьютерах и пр.
1 Теоретическая часть
Светодиод представляет собой гомо- или гетеро-pn-переход, прохождение тока через который в прямом направлении сопровождается генерацией в полупроводнике излучения. Излучение является следствием инжекционной люминесценции - рекомбинации инжектированных через pn-переход эмиттером неосновных носителей тока (электронов) с основными носителями тока в базе (дырками) (люминесценция - испускание света веществом, не требующее для этого нагрева вещества; инжекционная э электролюминесценция означает, что люминесценция стимулирована электрическим током).
Электролюминесценция может быть вызвана также сильным электрическим полем, как в случае электролюминесцентных конденсаторов с диэлектриком из порошка сернистого цинка (предпробойная электролюминесценция Дестрио).
Светодиоды для видимого и ближнего инфракрасного излучения изготавливаются главным образом из монокристаллов материалов типа A 5III 0B 5V 0: фосфида галия, арсенида галия и более сложных соединений: GaAs 41-x 0P 4x 0 , Ga 41-x 0Al 4x 0As , где x - доля содержания того или другого элемента в соединении.
Для получения требуемого цвета свечения материалы сильно легируются соответствующими примесями или их состав сильно варьируется. Так, для получения красного излучения фосфид галия легируется цинком и кислородом, для получения зелёного - азотом.
Если в GaAs 41-x 0P 4x 0 x=0,39 , то светодиод излучает красный свет с 7l 0=660 нм, если x=0,5...0,75, то янтарный с 7 l 0=610 нм.
Из простого соотношения, связывающего длину волны излучения с шириной запрещённой зоны полупроводника, 7 l 0[нм] = 1234/ 7e 0 [эВ] следует, что видимое излучение с 7 l, 0720 нм можно получить лишь от широкозонных полупроводников с шириной запрещённой зоны 7 e. 01,72 эВ. У арсенида галия при комнатной температуре 7 e 0=1,38 эВ. Поэтому светодиоды из арсенида галия излучают невидимое, инфракрасное излучение с 7l 0=900 нм. У фосфида галия 7e 0=2,19 эВ. Он может уже излучать видимый свет с длиной волны 7 l. 0565 нм, что соответствует желто-зелёному свечению. Как преобразователь электрической энергии в световую, светодиод характеризуется внешней эффективностью (или к.п.д.).
Эффективность светодиодов невелика 7 h, 00,1 (10%). В большинстве случаев она не превышает 0,5...5%. Это обусловлено тем, что свет трудно вывести из полупроводника наружу. При высоком значении коэффициентов преломления используемых проводников (для арсенида галия n=3,3 для воздуха - 1) значительная часть рекобинационного излучения отражается от границы раздела полупроводник-воздух, возвращается в полупроводник и поглощается в нём, превращаясь в тепло. Поэтому сравнительно невелики средние яркости светодиодов и их выходные мощности: L 4ф 0=10...10 53 0 кд/м 52 0, I 4ф 0=10 5-1 0...10 52 0 мкд, P 4ф 0=10 5-1 0...10 52 0 МВт. По этим параметрам они уступают лампочкам накаливания, по остальным - превосходят их.
Светодиод - миниатюрный твердотельный источник света. У него отсутствует отпаянная колба как у лампы накаливания. У него нет нити накала, а значит отсутствует время разогрева и микрофонный эффект. Он более стоек к механическим ударам и вибрациям.
Излучение светодиода весьма близко к монохроматическому в пределах 7 Dl 0=40...100 нм. Это снижает фоновые шумы источника по сравнению со случаем применения фильтров для монохроматизации излучения немонохроматического источника.
1.1. Конструкция светодиодов.
В излучателе плоской конструкции излучающий переход выполнен или диффузией, или эпитаксией. Штриховыми линиями показаны лучи, которые из-за полного внутреннего отражения от границы раздела не выходят из кристалла. Из кристалла выходят только те лучи, которые с нормалью составляют угол 7Q, 0arcsin n 41 0/n 42 0. Для арсенида галия и фосфида галия - это конус с углом у вершины не более 35 5o 0. Такая конструкция является самой дешёвой и простой. Однако она наименее эффективна, ей соответствует узкая диаграмма направленности излучения .
Геометрические размеры полусферической конструкции светодиода таковы, что R 7. 0r 77 0(n 42 0/n 41 0). В этом случае всё излучение попадает на границу раздела под углом, совпадающим с нормалью, и полностью выходит наружу. Эффективность полусферической конструкции - самая высокая. Она примерно в десять раз превышает эффективность плоской конструкции. Однако она намного дороже и сложнее в изготовлении.
Плоский кристалл светодиода может быть покрыт каплей эпоксидной смолы, выполняющей роль линзы. Смола имеет коэффициент преломления промежуточный между воздухом и кристаллом.
Это позволяет несколько увеличить светящуюся поверхность диода.
В последнем случае смола подкрашивается под цвет излучения светодиода. Большинство сигнальных и отображающих светодиодов выполняется такой конструкции.
Светодиоды могут изготавливаться и бескорпусными. Тогда их размеры определяются размерами кристалла (0,4 7& 00,4 мм 52 0).
1.2 Основные характеристики и параметры светодиодов
Параметры светодиодов
Сила света lV— излучаемый диодом световой поток, приходящий на единицу телесного угла в направлении, перпендикулярном к плоскости излучающего кристалла. Указывается при заданном значении прямого тока и измеряется в канделах (кд).
Яркость излучения L — величина, равная отношению силы света к площади светящейся поверхности. Она измеряется в канделах на квадратный метр (кд/м2) при заданном значении прямого тока через диод.
Постоянное прямое напряжение U — значение напряжения на СИД при протекании постоянного прямого тока.
Максимально допустимый постоянный прямой ток 1^пю— максимальное значение постоянного прямого тока, при котором обеспечивается заданная надежность при длительной работе диода.
Максимально допустимое обратное напряжение £/0бртах — максимальное значение постоянного напряжения, приложенного к диоду, при котором обеспечивается заданная надежность при длительной работе.
Максимально допустимое обратное импульсное напряжение (/„бримп — максимальное пиковое значение обратного напряжения на светодиоде, включая как однократные выбросы, так и периодически повторяющиеся.
Максимальное спектральное распределение Хтт— длина волны излучения, соответствующая максимуму спектральной характеристики излучения СИД.
Uгас. – напряжение гасящее;
Uпит. – напряжение питания;
Uсв. – напряжение светодиода;
Iсв. – ток светодиода ;
Rсв. – нагрузочный резистор светодиода;
Есв. – эффективность светодиода;
F – световой поток;
Р – мощность;
Ω – телесный угол;
α – угол наблюдения;
Исходные данные:
Ток светодиода – 20 mA;
напряжение сети – 9 В;
напряжение светодиода – 3,6 В;
угол наблюдения – 15°;
сила света – 6,4 кд
Эффективность E светодиодов (далее СИД) определяется отношением светового потока F, производимого СИД к «закачанной» в него мощности P. Это общая эффективность, включающая в себя энергетическую эффективность самого СИД, зависящую от физики работы, материала и конструкции СИД и световую эффективность зрения для спектра излучения данного СИД. Общая эффективность измеряется в люменах (лм) на ватт (Вт):