Смекни!
smekni.com

Методика расчета теплоснабжения промышленного жилого района (стр. 5 из 32)

Для закрытых систем теплоснабжения при регулировании по нагрузке отопления и тепловом потоке менее 100 МВт при наличии баков аккумуляторов у потребителей коэффициент k3 следует принимать равным единице.

Суммарный расчетный расход воды для потребителей при

при отсутствии баков аккумуляторов, а также с тепловым потоком 10 МВт и менее, следует определять по формуле:

(47)

Расчетный расход воды, кг/ч, в двухтрубных водяных тепловых сетях в неотопительный период,

, следует определять по формуле:

(48)

где

- коэффициент, учитывающий изменение расхода воды на горячее водоснабжение в неотопительный период (определяется по приложению №7).

Расход воды в обратном трубопроводе двухтрубных водяных тепловых сетей открытых систем теплоснабжения принимается равным в размере 10 % от расчетного расхода воды, определенного по формуле (41). Расчетный расход воды для определения диаметров подающих и циркуляционных трубопроводов систем горячего водоснабжения следует определять в соответствии со СНиП 2.04.01-85.

5. Гидравлический и тепловой расчет тепловых сетей.

Основной задачей гидравлического расчета является определение диаметров трубопроводов, а также потерь давления на участках тепловых сетей. По результатам гидравлических расчетов разрабатывают гидравлические режимы систем теплоснабжения, подбирают сетевые и подпиточные насосы, авторегуляторы, дроссельные устройства, оборудование тепловых пунктов. Гидравлический расчет выполняется, как правило, в 2 этапа:

Этап 1. Разработка расчетной схемы тепловых сетей.

На расчетной схеме проставляют номера участков (сначала по главной магистрали, затем по ответвлениям), расходы теплоносителя в кг/с или в т/ч, длины участков в метрах. Главной магистралью является наиболее протяженная и нагруженная ветвь сети от источника теплоты (точки подключения) до наиболее удаленного потребителя. При неизвестном располагаемом перепаде давления в начале теплотрассы, удельные потери давления R следует принимать:

а) на участках главной магистрали 20 - 40, но не более 80 Па/м;

б) на ответвлениях - по располагаемому перепаду давления, но не более 300 Па/м.

Этап 2. Определение полных потерь давления на каждом участке трубопровода.

Полные потери давления DР складываются из потерь давления на трение

и потерь давления в местных сопротивлениях DРм :

(49)

Потери давления на трение

определяют по формуле:

(50)

где R - удельные потери давления, Па/м, определяемые по формуле

, (51)

здесь l - коэффициент гидравлического трения;

d - внутренний диаметр трубопровода, м;

r - плотность теплоносителя, кг/м3;

w - скорость движения теплоносителя, м/c;

L - длина трубопровода, м.

Потери давления в местных сопротивлениях DРм определяют по формуле:

(52)

где åx - сумма коэффициентов местных сопротивлений.

Потери давления в местных сопротивлениях могут быть также определены по следующей формуле:

DРм= R Lэ, (53)

здесь Lэ - эквивалентная длина местных сопротивлений, которую определяют по формуле:

(54)

Гидравлический расчет выполняют по таблицам и номограммам, представленным в приложении. Сначала выполняют расчет главной магистрали. По известным расходам, ориентируясь на рекомендованные величины удельных потерь давления R, определяют:

· диаметры трубопроводов dн´S (см. приложение №12)

· фактические удельные потери давления R, Па/м;

· скорость движения теплоносителя w, м/с.

Условный проход труб, независимо от расчетного расхода теплоносителя не должен превышать в тепловых сетях 32 мм. Скорость движения теплоносителя (воды) не должна превышать 3,5 м/с.

Определив диаметры трубопроводов, находят:

· количество компенсаторов на участках

· местные сопротивления

Потери давления в местных сопротивлениях определяют по формуле (52), либо, по формуле (53). Затем, определив полные потери давления на участках главной магистрали и суммарные по всей ее длине, выполняют гидравлический расчет ответвлений, увязывая потери давления в них с соответствующими частями главной магистрали (от точки деления потоков до концевых потребителей).

Увязку потерь давления выполняют подбором диаметров трубопроводов ответвлений. Невязка не должна превышать 10 %. При невозможности полностью увязать диаметрами, излишний напор на ответвлениях должен быть погашен соплами элеваторов, дроссельными диафрагмами и авторегуляторами потребителей.

При известном располагаемом давлении DРр для всей сети, а также для ответвлений, предварительно определяют ориентировочные средние удельные потери давления Rm, Па/м:

(55)

где åL - суммарная протяженность расчетной ветви (ответвления) на потери давления в которой используется величина DРр;

a - коэффициент, учитывающий долю потерь давления в местных сопротивлениях (принимается по приложению №11).

Таблицы и номограммы гидравлического расчета, приведенные в литературе [5,6,7], составлены для эквивалентной шероховатости труб Кэ = 0.5 мм. При расчете трубопроводов с другой шероховатостью к значениям удельных потерь давления R следует принимать поправочный коэффициент b [6 табл. 4.14]. Диаметры подающего и обратного трубопроводов двухтрубных водяных тепловых сетей при совместной подаче теплоты на отопление, вентиляцию и горячее водоснабжение, как правило, принимаются одинаковыми.

Гидравлический расчет конденсатопровода выполняется по тем же пунктам, что и расчет трубопроводов водяных тепловых сетей. Тепловой расчет паропровода, проводимого к промышленному предприятию, как правило, ничем не отличается от обычного гидравлического расчета. Тепловой расчет паропровода можно выполнить по следующим пунктам:

1. По известному расходу пара

определяется диаметр паропровода по формуле:

(56)

В большинстве расчетов удельное падение давления

лежит в пределах 180 – 220 Па/м.

rп = 6,25 кг/м3 – плотность пара при t = 230 °С.

Полученное значение диаметра d уточняется по ГОСТ 8731-74.

2. Уточняется значение удельного падения давления

(57)

3. Потери температуры по длине паропровода

(58)

где ql = 353 Вт/м – нормы тепловых потерь для паропровода при tп = 230 °С;

l – длина паропровода;

b = 0,2 – коэффициент местных потерь;

ср = 2449 кДж/(кг×°С) – теплоемкость пара.

4. Давление в конце паропровода

(59)

где a =

- доля местных сопротивлений;

Р1 – давление пара у источника;

Тср =

– средняя температура пара по длине паропровода;

5. Падение давления пара

DР = Р1 – Р2 (60)

6. Потери напора

(61)

6. Гидравлические режимы водяных тепловых сетей

Гидравлические режимы водяных тепловых сетей (пьезометрические графики) следует разрабатывать для отопительного и неотопительного периодов. Пьезометрический график позволяет: определить напоры в подающем и обратном трубопроводах, а также располагаемый напор в любой точке тепловой сети. Пьезометрические графики строятся для магистральных и квартальных тепловых сетей. Для магистральных тепловых сетей могут быть приняты масштабы: горизонтальный Мг 1:10000; вертикальный Мв 1:1000; для квартальных тепловых сетей: Мг 1:1000, Мв 1:500.

Пьезометрические графики строятся для статического и динамического режимов системы теплоснабжения. Пьезометрический график для отапливаемого периода строится поочередно, в 9 этапов:

1). За начало координат в магистральных сетях принять местоположение ТЭЦ.

2). В принятых масштабах построить профиль трассы и высоты присоединенных потребителей (приняв 9-ти этажную застройку). За нулевую отметку оси ординат (оси напоров) принимают отметку низшей точки теплотрассы или отметку сетевых насосов.