Смекни!
smekni.com

Термометрия понятие и принципы (стр. 1 из 3)

Лабораторная работа: Термометрия

Цель работы: Углубить представления о температуре, изучить принципы и освоить некоторые методы измерения температуры.

Оборудование: Жидкостные термометры, термопара, термометр сопротивления, термистор, оптический пирометр «Промiнь», лампа накаливания с блоком питания, электроплитка, потенциометр постоянного тока ПП-63, аккумулятор, мост реохордный Р – 33, блок питания ВСШ на 4 и 6 В, индикатор сопротивления ММВ, металлический стаканчик и другие принадлежности.

1.Теоретическая часть

1.1Понятие температуры .

Температура в обычном понимании характеризует степень нагретости тела. Строгое определение температуры даётся в молекулярно–кинетической теории, где под температурой понимают меру средней кинетической энергии поступательного движения молекул идеального газа: <ε> = (3&bsol;2)kT, где k = 1.38·10-23 Дж/К – постоянная Больцмана, m – масса молекулы, V – скорость её поступательного движения.

Из последнего определения ясно, что обычная измеренная температура относится к огромному числу молекул и даёт определение об их средней кинетической энергии. Понятие температуры применимо таким образом только к массиву молекулы поэтому температура является макроскопическим параметром состояния вещества.

1.2 Принципы термометрии .

1.2.1.Термометрические параметры.

Измерение температуры обычно производится косвенным путём, т. е. не сводится к измерению кинетической энергии молекул. Оно основывается на измерении некоторых физических параметров, зависящих от температуры. К параметрам предъявляются следующие требования: выбранный параметр должен существенно, непрерывно, однозначно и просто изменяться простыми средствами; измерен6ия величины параме5тра не должно вносить значительных изменений в температурный режим измеряемой среды.

Список наиболее употребляемых термометрических параметров имеет следующий вид:

- объём тела ( тепловое расширение,

, жидкостные и газовые температуры);

- электрическое сопротивление (R=R0(1+t), проводники-терморезисторы и полупроводники-термисторы );

- термо ЭДС ( термопары или термоэлементы, Тэдс=сt);

- линейные размеры ( линейное расширение L=L0(1+t), биметаллические пластины);

- спектр излучения ( энергетическая светимость Rэ=T4, спектральный состав min= b/T, радиационный, яркостный и цветовой пирометры );

Применяются также зависимость от температуры скорости распространения звука, показателя преломления света веществом и многие другие параметры.

К внешним принципам методики термометрии относится строгое соблюдение следующего условия – термометрическое тело и среда должны войти в состояние теплового равновесия. Поэтому очень важно, чтобы тепловая «инерционность» измерительного прибора была незначительной, тогда он скорее примет температуру измеряемой среды, а собственная теплоёмкость – минимальной, при этом он не внесёт искажений в состояние среды.

В отдельных случаях, при точных и локальных измерениях геометрические размеры рабочей части термометра должны быть точечными.

1.2.2 Температурные шкалы.

В настоящее время применяются несколько температурных шкал, отличающихся выбором опорных ( реперных ) точек. В школе Цельсия интервал между точкой плавления льда и точкой кипения воды при нормальном давлении делится на сто равных долей – градусов Цельсия (0С). В шкале Фаренгейта за нуль принимается температура смеси льда и соли ( -320С), а точка кипения воды принимается за 212 градусов.

Третья шкала – это наиболее употребляемая в научной литературе абсолютная шкала температур. Физический смысл нулевой температуры в этой школе – полное отсутствие молекулярного движения.

Связь между температурными шкалами имеет вид:

Тс = (5/9)Ч(TF-32); TF=32+(9/5)ЧTc; Tc=t=Tk-273

1.3 Виды термометров.

1.3.1 Газовые термометры.

Наиболее строго требованию линейной и существенной зависимости от температуры отвечают параметры идеального газа – объём и давление. Поведение реального газа при небольших давлениях и достаточно высоких температурах практически не отличается от поведения идеального газа . При этой причине газовые температуры используются как эталонные, по ним градуируют и проверяют другие термометры.

Простейший газовый термометр может представлять собой запаянную с одной стороны трубку, в которой некоторая масса газа отделена от атмосферы капелькой ртути (рис.1). При нагревании газ расширяется, а его давление остаётся равным атмосферному. В соответствии с уравнением Клайперона-Менделеева объём и температура находятся в состоянии : v=(mR/мр)ЧT. Для конкретного термометра выражение в скобках играет роль постоянного коэффициента, зависящего от количества газа и от атмосферного давления.

Процедура измерения температуры газовым термометром сводится к тому, что его помещают в исследуемую среду, затем, дождавшись установления равновесия, определяют объём v и по графику T = f(v) находят Т. На практике часто линейка Л служит шкалой температур.

1.3.2. Жидкостные термометры.

Если ёмкость газового термометра заполнить жидкостью с достаточно большим коэффициентом теплового объёмного расширения, то полученный прибор станет жидкостным термометром. В настоящее время такими жидкостями является ртуть, или подкрашенные спирт, толуол, пентан и некоторые другие вещества.

Для повышения чувствительности и точности измерений термометр состоит из двух сообщающихся объёмов, один из которых содержит основную массу жидкости, а второй служит индикатором изменения объёма ( см. рис. 2 ), для чего ему придаётся форма цилиндра капиллярных размеров.

Жидкостные термометры запаяны с обеих концов, поэтому более удобны в обращении, что послужило причиной их широкого распространения.

К недостатком их можно отнести нелинейность температурной зависимости объёмов, что делает необходимым калибровать их по газовым термометрам. Они отличаются также инерционностью (время вхождения в равновесное состояние со средой не менее 10 минут ), большой собственной теплоёмкостью до 10 Дж/К и размерами рабочей части. Диапазон их работы ограничен с одной стороны температурой кристаллизации, а с другой – температурой кипения жидкости.

1.3.3. Твердотельные термометры.

1.3.3.1. Биметаллические термометры -используют различие в коэффициентах теплового линейного расширения разных металлов. Скреплённые вместе, как показано на рис.3, пластинки при изменении температуры изгибаются или закручиваются. Величина деформации зависит от температуры, поэтому снабдив пластины механизмами и шкалами можно снимать прямые показания температуры.

Достоинства биметаллических термометров – простота изготовления, механическая прочность. Возможность встраивания в системы автоматики и телемеханики. Недостатки – низкая чувствительность, проявление «усталости» металлов и отсюда – необходимость частой проверки и калибровки по эталонным термометрам.

1.3.3.2. Термопары – представляют собой два различных проводника, соединенных сваркой или пайкой. Металлы должны иметь как можно большую разницу в работе выхода электронов, тогда между ними устанавливается контактная разность потенциалов, величина которой зависит от температуры зоны контакта. Для термопары используют обычно хорошо изученные пары металлов, например, медь констант, хромель-алюмель, платина-родий и другие.


Для измерения температуры термопарой её спай вводится в исследуемую среду, разность потенциалов её свободных концов измеряется каким либо потенциометром или переводится в градусы посредством градуировочного графика или переводного коэффициента , получаемого из формулы ЭДС=Т.

Для абсолютных измерений термопару калибруют по газовому или иному эталонному термометру. Значительно чаще приходится измерять разность температур, тогда применяют дифференциальную термопару. Она представляет собой две одинаковые термопары, включённые навстречу друг другу ( рис.4 ). Спаи помещают в те места, разность температур которых необходимо измерить. Если спай одной из них поместить в среду с известной и стабильной температурой, например, в тающий лёд, то после соответствующей градуировки дифференциальной термопарой можно производить и абсолютные температурные измерения.

Достоинства термопар – малые, практически, точечные размеры рабочего тела, малая инерционность и теплоемкость, возможность дистанционных измерений, большой диапазон измеряемых температур – от сверхнизких до точки плавления применяемых металлов. Недостаток – зависимость термоЭДС от температуры носит нелинейный характер, что влияет на точность измерений.

1.3.3.3. Термометры сопротивления используют свойство чистых металлов сплавов и полупроводников менять своё сопротивление при изменении температуры. Для металлов это свойство описывается выражением R=R0Ч(1+t), где R0 - сопротивление при 0 С,  - температурный коэффициент сопротивления данного металла, t – температура по шкале Цельсия. Для металлов величина  равна 0.4-0.6% при изменении температуры на один градус. Для полупроводников зависимость иная – с ростом температуры сопротивление убывает, причём, более существенно ( в 8-10 раз ), чем у металлов.

Термометры сопротивления уступают термопарам по инерционности, собственной теплоёмкости, размерами. Нелинейность зависимости R = f(t) у них больше, поэтому точность измерения ниже. К достоинствам можно отнести измерительную схему, где за счёт использования внешнего источника можно повысить чувствительность измерений. Как правило измерение производиться мостовым методом.