pV=mRT/M
его объём и температура находятся в соотношении: V=(mRТ/Мр) =(mR/Мр)Т = αТ . Для конкретного термометра выражение (mR/Мр) играет роль постоянного коэффициента α, зависящего от количества газа, его состава и от атмосферного давления.
Процедура измерения температуры газовым термометром сводится к тому, что его термометрическое тело (колбу) помещают в исследуемую среду, затем, дождавшись установления равновесия, определяют объём V и по графику T = f(V) находят температуру Т. На практике после предварительной градуировки линейка Л становится шкалой термометра.
1.3.2. Жидкостные термометры.
Если ёмкость газового термометра заполнить жидкостью с достаточно большим коэффициентом теплового объёмного расширения, то полученный прибор станет жидкостным термометром. В настоящее время такими жидкостями является ртуть или другие вещества, например, подкрашенные спирт, толуол, пентан.Для повышения чувствительности и точности измерений жидкостный термометр состоит из двух сообщающихся объёмов, один из которых содержит основную массу жидкости, а второй служит индикатором изменения объёма (см. рис.2), для чего ему придаётся форма цилиндра капиллярных размеров.
Жидкостные термометры запаяны с обоих концов, поэтому более удобны в обращении, что послужило причиной их широкого распространения.
К их недостатком можно отнести нелинейность температурной зависимости объёмов, что делает необходимым калибровать их по газовым термометрам. Они отличаются также инерционностью (время вхождения в равновесное состояние с исследуемой средой не менее 10 минут), большой собственной теплоёмкостью (до 10 Дж/К) и размерами термометрического тела, что препятствует точечным, локальным измерениям. Диапазон их работы ограничен с одной стороны температурой кристаллизации, а с другой – температурой кипения жидкости.
1.3.3. Твердотельные термометры.
1.3.3.1. Биметаллические термометры - используют различие в коэффициентах теплового линейного расширения разных металлов. Скреплённые вместе, как показано на рис.3, пластинки при изменении температуры изгибаются или закручиваются. Величина деформации зависит от температуры, поэтому, снабдив пластины механизмами и шкалами, такой термометр можно проградуировать и снимать с него прямые показания температуры.Достоинства биметаллических термометров – простота изготовления, механическая прочность, возможность встраивания в системы автоматики и телемеханики. Недостатки – низкая чувствительность, проявление «усталости» металлов и отсюда – необходимость частой проверки и калибровки по эталонными термометрами.
1.3.3.2. Термопары. В основе их работы лежит явление контактной разности потенциалов – при соединении двух разнородных материалов из-за различия в их электрических свойствах на свободных концах обнаруживается напряжение. Термопары представляют собой два проводника из разных металлов (а и в на рис.4), концы которых соединены сваркой или пайкой. Металлы должны иметь как можно большую разницу в работе выхода электронов, тогда между ними устанавливается легко регистрируемая контактная разность потенциалов (десятые доли вольта), величина которой зависит от температуры в зоне контакта. Для термопары используют обычно хорошо изученные пары металлов, например, медь- константан, хромель-алюмель, платина-родий и другие.Для измерения температуры термопарой её спай (обозначен цифрой 1 на рис.4) вводится в исследуемую среду, разность потенциалов её свободных концов измеряется каким либо потенциометром и переводится в градусы посредством градуировочного графика или переводного коэффициента a, получаемого из формулы ЭДС=aТ. Для абсолютных измерений термопару калибруют по газовому или иному эталонному т
ермометру.Значительно чаще приходится измерять разность температур, тогда применяют дифференциальную термопару. Она представляет собой две одинаковые термопары, включённые навстречу друг другу (рис.5). Спаи помещают в те места, разность температур которых необходимо измерить. Если один спай поместить в среду с известной и стабильной температурой, например, в тающий лёд, то после соответствующей градуировки такой термопарой можно производить абсолютные температурные измерения по шкале Цельсия.
Достоинства термопар – малые, практически, точечные размеры рабочего тела, малая инерционность и теплоемкость, возможность дистанционных измерений, большой диапазон измеряемых температур – от сверхнизких до точки плавления применяемых металлов. Недостаток – нелинейности шкалы обусловленная тем, что зависимость термоЭДС от температуры носит нелинейный характер.
1.3.3.3. Термометры сопротивления используют свойство чистых металлов, их сплавов и полупроводников менять своё сопротивление при изменении температуры. Для металлов это свойство описывается выражением R=R0Ч(1+at), где R0 - сопротивление при 0 С, a - температурный коэффициент сопротивления данного металла, t – температура по шкале Цельсия. Для металлов коэффициент a положителен и составляет 0.4-0.6 % при изменении температуры на один градус. Для полупроводников зависимость иная – с ростом температуры сопротивление убывает (a<0), причём, более существенно - в 8-10 раз быстрее, чем у металлов.Термометры сопротивления уступают термопарам размерами, инерционностью, собственной теплоёмкостью. Нелинейность зависимости R = f(t) у них больше, поэтому точность измерения ниже. К достоинствам можно отнести измерительную схему (рис.6), где за счёт использования внешнего источника можно повысить чувствительность измерений. Как правило, измерения производятся мостовым методом.
1.3.4. Оптическая термометрия.
При наличии теплового движения молекул вещества, т.е. практически всегда, тело является источником электромагнитного излучения. Интенсивность этого излучения и его спектральный состав связаны с температурой. Для идеализированного абсолютного чёрного тела энергия, излучаемая с единицы поверхности в единицу времени определяется законом Стефана-Больцмана: Rэ=sT4 , где s=5.67∙10-8 Вт/м2К4 - постоянная величина, Т – абсолютная температура. Основанные на этом законе термометры носят название радиационных пирометров (рис.7). Строго рассчитанная доля излучения исследуемого тела выделяется входной линзой прибора и регистрируется чувствительным колориметром. Затем производится перерасчет к полному излучению со всей поверхности исследуемого тела и вносится поправка на степень «серости» тела. Измерить величину R технически очень трудно, поэтому такие термометры не дают точных измерений.Более распространены яркостные пирометры, в которых яркость[1] свечения исследуемого тела сравнивается с яркостью тела, температура которого известна. Схематически устройство яркостного пирометра показывает рис.8. Обычно в качестве тела сравнения берут вольфрамовую нить Н специальной электролампы, питаемой от стабильного источника тока E. Меняя ток этой лампы при помощи реостата R можно выровнять её яркость с яркостью исследуемого тела, в этом состоянии температуры тел одинаковы. Температуру нити лампы сравнения определяют по току миллиамперметра А, при этом шкалу миллиамперметра заранее градуируют непосредственно в градусах.
Пирометр представляет собой зрительную трубу Т, позволяющую рассматривать удаленные объекты. Нить лампы сравнения устанавливается в фокальной плоскости окуляра. В эту же плоскость вращением объектива проецируется изображение объекта. При правильной настройке оптической части нить лампы сравнения наблюдается на фоне объекта.
Нить лампы сравнения нельзя нагревать выше определенной температуры (14000С), поэтому для расширения предела измеряемых температур в оптическую схему пирометра включают светофильтры, ослабляющие яркость исследуемого тела с точно известной кратностью.
Яркостный пирометр показывает действительную температуру лишь тогда, когда тело и нить лампы одинаково близки по оптическим свойствам к абсолютно черному телу. Дело в том, что показатель этой близости – «коэффициент серости» - зависит от температуры; чем она выше, тем он ближе к единице. Поэтому для получения истинного значения температуры в полученный результат вводят поправку, зависящую от материала излучающего тела и от его температуры.
В отдельных случаях применяют так называемый цветовой пирометр, когда температуру определяют на основании закона Вина (λмах=b/T) , связывающего температуру излучающего тела с длиной волны, на которую приходится максимум его излучательной способности. Цветовой пирометр состоит из прибора, разлагающий излучение нагретого тела в спектр, и фотоэлектрической приставки, измеряющей распределение интенсивности в этом спектре.