(35)
LG =− R01qˆ2 f αβfαβ+ R~ − qˆ62 aαaα− R20. ’ ,
&#:
(36)
qˆ = 8πκR0
(37) Λ= R0
4
# Λ – (Λ ~ 10−56 −2 ), κ – ( ! . .
" ! (36) # LG ! #:(38)
LG =−(f αβfαβ+ 6R0 aαaα)+ R~ − 1 R02
, # # ’ | ||||
R0 . ,# | , ! (37), R0 | |||
# | (38) .
5. )"#
| |||
(29) | (34) | , | ||
# | - | , | ||
’ , | & | & | ||
. | . " (38) | |||
(29) #: | ||||
(39)
δ −(f αβfαβ + 6R0 aαaα)+ R~ − 1 R0 − g d 4 x = 02
~ = g
# R
(40)
(41)
#
(42)
(43)
Gµν –
.
’
1
’
’
# µνR~µν. $ gµν, Γµανaα ( ) ( (10)):
∇~σf µσ+3R0aµ= 0
# :
≡ R~µν − 1 gµνR~Gµν
2
Tˆµν ≡
41π f aµa aαaα( ! , Tˆµν – " ’ - ’ . (40) (41), & , # #
’ # .
#
’ # (41)
- ’ (43), (40) # ( ! , #
. ’ (41) - ,
& .
, | , | , | |||
’ . * | ’ | ||||
. $ | R0 | ||||
& | (40) | (41) | & , | ||
& | & | ||||
’ | . | (41) | |||
# | aµ " | fµν | |||
. $ | , # | aµ, | |||
, # fµν, |
’ | . | |||||
- | Tˆµν (43), | &# | (40) | |||
’ - : | ’ | . % | # | ’ |
(44)
µaµ. * # | (41) (41) | & # | &#, | . ~ ∇µaµ = 0. |
1 Tˆµν # # ’ #
&, ’ - :
(45) ∇µTˆµν = ∇~µTˆµν = 0
$ & (45) (40) #
" # 5 , & .
#
R0 . . (40) :
(46)
− R~ + R0 = − 3κ4πR0 aαaα = −6AαAα, # " (28) &#,
(47) R0 = R~ −6AαAα= R
1 , R0 . *
(40) ! (47) !.
(40) (41) # ,
, & ( ),
& #. 3 ,
, . $ :
(48) Gµ
(49) ∇~σf µσ+3R0aµ=ξjµ
# Tµν = Tˆµν +T~µν, T~µν – ’ - , Tµν – ’ - , jµ – , ξ – (ξ= 4π/ ).
& & #
, & # :
(50) ∇µπµ = ∇~µπµ = 0
(51) ∇µjµ = ∇~µjµ = 0
# πµ = µuµ ( ), jµ = ρuµ ( #), µ –
, ρ – # , uµ –
# (dxµ
dτ). $ µ ρ # ," . $ & µ, ρ uµ , # .
- #
. * # (49) #
& # (51) 2 #
’ :
(52) ∇µaµ = ∇~µaµ = 0
(
. ( ’ (49), # aµ #.
* # # (48)
& # ’ - :
(53) ∇µTµν = ∇~µTµν = 0
. ’ ’ -
:
(54) ∇~µT~µν = −∇~µTˆµν
. " (44) (49) (52) T~µν (54)
! #:
(55)
jµ(55) #
& .
1 # , #
# . 1 ’ - # ! #,
~ = µuµuν =πµuν,
# & # & , Tµν
# µ – #, uµ – #
# #. # (55) # ’ #
" & (50) #:
(56)
jµ+ # # # , # #
# ’- . $ ’ πµ=µuµ= mδ(x − x0 )uµjµ=ρuµ= qδ(x − x0 )uµ, # m q – # . $
(56) " , uβ∇~βuν = duν
dτ+ Γανβuαuβ, :duν
(57)
+Γανβuαuβ= q f uβdτ mc
( # # . , # , (57) & # . $ # # 2 , & & # &. 1 , # ! # ( ) # | |
# # , # # .
6. *++%!
| , |
. ! & ! | |
# & # &. $ | ’ |
# # # | |
’ . | (48) |
# (55) (57) # | , |
& | & |
# | . , |
& ’ | (49), |
’ - (43). | ,# , # |
R0 ’ , | (49), # |
. (49) | & |
& | ’ |
. 1 , ’ # #, . | # (49) # |
$ - | # # |
( g00 = −1, g11 = g22 = g33 =1) ’ (58) ∂2aµ−3R0 aµ= 0 | (49) #: |
# ∂2 =∆− −2∂t2 ( ’0 ). ( | # # |
# - | , # & |
# # .
(58) # !, & # & . $
# & # & ’ ! # #:
(59) aµ= a0µsin(kx −ωt)
# x – # # # & . *
’ ω k !:
(60) ω2 = 2 (k 2 +3R0 )
# c – # # &
#. . ! (60) ’ & ! # #,
, # ’ ’ ,
# # :
(61)
v =ωk = c 1+ 3kR20 > c(62) v = ddkω= c 1− 3R0 ωc22 < c
1 , ’ # , & (58), ’ # # ! # c (62). % # (61) (62)
( # ). &
# c. , c
# & , ’ ! # .
$ - ! (58)
#. . (58) ’
’ & # & # :
(64) ϕ =
q e−αrr
# ϕ= a0 (’ ), q – ’ #, α= 3R0 = mγc/ , r – # # #. - α(64) « » ’ .
. , &
’ (58) , ,
! ’ & , mγ:
3R0
(63) mγ=c
* ’ # # (62). .
(63)
. (63) ’ .
* ! (37) , &
’ :
(64) 3R0 ~10−55 −2
(65) mγ ~ 10−65
* # # #
’ . . ’
# # # # :
(66) mγ < 3⋅10−60
1 (65) # ’ . ( ,
# ’ , # " # # ’ , # ’ .
. &
’ , ’ ’ & # . *
#&#,
# ’ . $ - -% ( ). * ’ -
.
. # #
, ’ – ( ),
# & -
. / # ’ # & & ’
. ( #
, " ’ –
# - . * ’ #
# &
’ .
$ & & & (
) # & & # # &
# #, # #.
, # ’
, #"
. 3 ’ &
# , ( ’ - ). ) &