Смекни!
smekni.com

Единая геометрическая теория классических полей (стр. 2 из 3)

(35)

LG =− R01qˆ2 f αβfαβ+ R~ − qˆ62 aαaα− R20

. ’ ,

&#:

(36)

qˆ = 8π

κR0

(37) Λ= R0

4

# Λ – (Λ ~ 10−56 −2 ), κ – ( ! . .

" ! (36) # LG ! #:

(38)

LG =−(f αβfαβ+ 6R0 aαaα)+ R~ 1 R0

2


, # # ’
R0 . ,# , ! (37), R0
# (38) .

5. )"#

(29)

(34) ,
# - ,
’ , & &
. . " (38)
(29) #:

( # #

(39)

δ −(f αβfαβ + 6R0 aαaα)+ R~ − 1 R0 − g d 4 x = 0

2


~ = g

# R

(40)

(41)

#

(42)

(43)

Gµν –

.

1

# µνR~µν. $ gµν, Γµανaα ( ) ( (10)):

Gµ

∇~σf µσ+3R0aµ= 0

# :

R~µν − 1 gµνR~

Gµν

2

Tˆµν ≡

41π f
aµa
aαaα

( ! , Tˆµν – " ’ - ’ . (40) (41), & , # #

’ # .

#

’ # (41)

- ’ (43), (40) # ( ! , #

. ’ (41) - ,

& .

, , ,
’ . *

. $

R0
& (40) (41) & ,

&

&
. (41)
# aµ " fµν
. $ , # aµ,
, # fµν,

.
- Tˆµν (43), &# (40)
’ - : . % #

(44)

µaµ
. * # (41)

(41)

& # &#, . ~ ∇µaµ = 0.

1 Tˆµν # # ’ #

&, ’ - :

(45) ∇µTˆµν = ∇~µTˆµν = 0

$ & (45) (40) #

" # 5 , & .

#

R0 . . (40) :

(46)

R~ + R0 = − 3κ4πR0 aαaα = −6AαAα

, # " (28) &#,

(47) R0 = R~ −6AαAα= R

1 , R0 . *

(40) ! (47) !.

(40) (41) # ,

, & ( ),

& #. 3 ,

, . $ :

(48) Gµ

(49) ∇~σf µσ+3R0aµjµ

# Tµν = Tˆµν +T~µν, T~µν – ’ - , Tµν – ’ - , jµ – , ξ – (ξ= 4π/ ).

& & #

, & # :

(50) ∇µπµ = ∇~µπµ = 0

(51) ∇µjµ = ∇~µjµ = 0

# πµ = µuµ ( ), jµ = ρuµ ( #), µ –

, ρ – # , uµ

# (dxµ

dτ). $ µ ρ # ,

" . $ & µ, ρ uµ , # .

- #

. * # (49) #

& # (51) 2 #

’ :

(52) ∇µaµ = ∇~µaµ = 0

(

. ( ’ (49), # aµ #.

* # # (48)

& # ’ - :

(53) ∇µTµν = ∇~µTµν = 0

. ’ ’ -

:

(54) ∇~µT~µν = −∇~µTˆµν

. " (44) (49) (52) T~µν (54)

! #:

(55)

jµ

(55) #

& .

1 # , #

# . 1 ’ - # ! #,

~ = µuµuν µuν,

# & # & , Tµν

# µ – #, uµ – #

# #. # (55) # ’ #

" & (50) #:

(56)

jµ

+ # # # , # #

# ’- . $ ’ πµuµ= mδ(x x0 )uµjµuµ= qδ(x x0 )uµ, # m q – # . $

(56) " , uβ~βuν = duν

dτ+ Γανβuαuβ, :

duν

(57)

ανβuαuβ=
q f uβ

dτ mc

( # # . , # , (57) & # . $ # # 2 , & & # &. 1 , # ! # ( ) #
# # , # # .

6. *++%!

,
. ! & !
# & # &. $
# # #
’ . (48)
# (55) (57) # ,
& &
# . ,
& ’ (49),
’ - (43). ,# , #
R0 ’ ,

(49), #

. (49) &
&
. 1 , ’ # #, . # (49) #
$ - # #
( g00 = −1, g11 = g22 = g33 =1) ’ (58) ∂2aµ−3R0 aµ= 0 (49) #:
# ∂2 =∆− 2t2 ( ’0 ). ( # #
# - , # &

# # .

(58) # !, & # & . $

# & # & ’ ! # #:

(59) aµ= a0µsin(kx −ωt)

# x – # # # & . *

’ ω k !:

(60) ω2 = 2 (k 2 +3R0 )

# c – # # &

#. . ! (60) ’ & ! # #,

, # ’ ’ ,

# # :

(61)

v =ωk = c 1+ 3kR20 > c

(62) v = ddkω= c 1− 3R0 ωc22 < c

1 , ’ # , & (58), ’ # # ! # c (62). % # (61) (62)

( # ). &

# c. , c

# & , ’ ! # .

$ - ! (58)

#. . (58) ’

’ & # & # :

(64) ϕ =

q e−αr

r

# ϕ= a0 (’ ), q – ’ #, α= 3R0 = mγc/ , r – # # #. - α

(64) « » ’ .

. , &

’ (58) , ,

! ’ & , mγ:

3R0

(63) mγ=

c

* ’ # # (62). .

(63)

. (63) ’ .

* ! (37) , &

’ :

(64) 3R0 ~10−55 −2

(65) mγ ~ 10−65

* # # #

’ . . ’

# # # # :

(66) mγ < 3⋅10−60

1 (65) # ’ . ( ,

# ’ , # " # # ’ , # ’ .

7. ,#%-(

. &

’ , ’ ’ & # . *

#&#,

# ’ . $ - -% ( ). * ’ -

.

. # #

, ’ – ( ),

# & -

. / # ’ # & & ’

. ( #

, " ’ –

# - . * ’ #

# &

’ .

$ & & & (

) # & & # # &

# #, # #.

, # ’

, #"

. 3 ’ &

# , ( ’ - ). ) &