’ # , "
’ # ’ - ’ . $ & &
. * , # " & &
’ , # !
2 . $ &, # , , ( ! ( ).
. ’ , " ’ ,
. * ’
, . * # &#
’ .
$ , #
, # & &
& ! .
_____________________
"
1. 0 - -% :
∆αµν = Γµαν + Kα⋅µν
Kαµν = −Kµαν
2. ." % :
σ =∂µg , # g = det gµν2g
3. $ # :
Ωαµν = ∆αµν − ∆ανµ = Kαµν − Kανµ
Kαµν =
1 (Ωαµν − Ωµαν − Ωναµ)2
4. :
δuµ = −∆µαβuαdxβ, δuµ = ∆αµβuαdxβ
5. % # :
∇µuν = ∂µuν + ∆νσµuσ, ∇~µuν = ∂µuν + Γσνµuσ
∇µuν = ∂µuν − ∆σνµuσ, ∇~µuν = ∂µuν − Γνσµuσ
6. % # # ∆αµν = Γµαν + iAα⋅µν:
Aα⋅µα = Aα⋅(µν) = 0, ∆αµα = Γµαα , ∆α(µν) = Γµαν
∇µuµ = ∂µuµ+ ∆µσµuσ = ∂µuµ+ Γσµµuσ
∇µT (µν) = ∂µT (µν) +∆µσµT (σν) + ∆ν(σµ)T (µσ) = ∂µTµν + ΓσµµT (σν) + ΓσνµT (µσ)
7. 1 - :
(∇µ∇ν −∇ν∇µ)uλ = Rλ⋅σµνuσ + Ωσ⋅µν∇σuλ
Rα⋅βµν = ∂µ∆αβν − ∂ν∆αβµ+ ∆ατµ∆τβν − ∆ατν∆τβµ
8. - - :
R
+∇~ α −∇~νKα⋅βµ+ Kα⋅τµKτ⋅βν− Kα⋅τνKτ⋅βµ
µK ⋅βν
9. 1 2 3 :
εαβγλ= g [αβγλ], εαβγλ=− 1 [αβγλ]+1, αβγλ - " 0123
[αβγλ]= −1, αβγλ - " 0123
0, αβγλ #
10. * ’- :
δα⋅β⋅γ⋅ λ⋅µνστ ≡ −εαβγλεµνστ δα⋅β⋅γ⋅µνσ ≡ −εαβγτεµνστ
!"#!&"#
1. Einstein A., The Meaning of Relativity, Princeton Univ. Press, Princeton, N.Y, 1950
(* #: (!& ! )., . , 2, ., 1955).
2. ). (!& ! , . & #, 1. 1-2, #- «) », ., 1966.
3. E. Schrodinger, Space-Time Structure, Cambridge University Press, 1960 (* #:
(. 6#, * - , , )7 ,
2000).
4. * *."., * & +.,., 1 , #- «) », ., 1973.
5. C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation, Freeman, San Francisco,
1973 (* #: -. , , . . , " . / , / , #- « », .,
1977).
6. 0.). " $ , .1. % , )... 2 , . : #
, #- «) », ., 1986.
7. E. Cartan, Lecons sur la Geometrie des Espaces de Riemann, Gauthier-Villars, Paris, 1928 and 1946 (* #: % (., -
, #- /, ., 1960).
8. +. Cartan, On Manifolds with an Affine Connection and the Theory of General Relativity, translated by A. Magnon and A. Ashtekar (Bibliopolis, Naples, 1986).
9. %.%. 1 , ) # -
, #- «+# -..», 2002 .
10. 3. . - $ , 0 & # , 7),
1 119. . 3, 1976.
11. Alberto Saa, Einstein-Cartan theory of gravity revisited, gr-qc/9309027 (1993).
12. Hong-jun Xie and Takeshi Shirafuji, Dynamical torsion and torsion potential, gr-qc/9603006 (1996).
13. V.C. de Andrade and J.G. Pereira, Torsion and the Electromagnetic Field, gr-qc/9708051 (1999).
14. Yuyiu Lam, Totally Asymmetric Torsion on Riemann-Cartan Manifold, gr-qc/0211009 (2002).