. .
(dimstein@list.ru)
, .
, 2007 .
.
- ,
- . -
! !
! ! . "
! ! ,
# $$#
!. %
& ,
! , ! & .
1.
!
" # # . $ # -
, – # .
% , # # & & –
’ . ( ( # &# & & ) # . )
# , ’ # .
& # #
, ’ # &. * ’
’ # # ,
- ,
. *
& #&# # # & & –
& & – # !" # "
(# ) . +# # #
& #, #
’ # # # .
( #
(’ # - , # ). ( & # & #
# & & – ’ . ,# , & , ’ # #. ) # , #
’ ,
# #.
* # #
( ! ( ’ # ), #
’ . $ ’
# & #
.
2.
# &#
( ! , & ’ . )
– - -%
"& - [14]. * ’
&# # # & & & & , # &:
# #, # # ( , #).
, - -%
, 24 .
# # &# , # # . * # # | ||
& . % ( ! # | ||
- ( ). | " | |
. # , | # | |
, ’ , (−,+,+,+). | , # # | |
% # & ! # . | # # | |
A) * - ’ . | ||
B) / # - ’ # . | # | |
C) * # - # #. | #, # | |
* A ’ | - | |
, & | , B | |
# ’ . ) | , $ | |
( ! , | ! |
# , - -% . ( #" ,
# ’ . * . # # ,
# .
. 0 - ,
’ , , &
, # # #(Ωα⋅µν=Ωα⋅[µν]):
# ∆αµν – . * ’ . .
∆αµν # :
(2)
# K
– , # #(Kαµν= K[αµ]ν), Γµαν – % ( , . 1-3).
$ # #
" $. # & ( ) ’ ( ’ # ) #:
(3)
dds2x2µ µ dxdsα dxdsβ= 0+∆(αβ)
d 2xµ
(4)
ds2 +Γαµβ dxdsα dxdsβ= 0(3) #, (4) ’ .
. $ (3) (4) # #, #,
# :
(5) ∆µ(αβ) =Γαµβ
$ (2) ’ # !:
(6) ∆µ[αβ] = Kµ⋅αβ
, # #
#. , # (Kαµν= K[αµν] ). . (1) (6) ’
!
(7)
, #, | (Ωαµν=Ω[αµν] ). 1 | , | |||||
$ # | . | ||||||
% , # | (7) | . |
* ’ .
, & -
- -% , #, ( ),
’ #, ,
# .
1)
. ( # -# :
(8) ds2 = gµνdxµdxν
gµν # ∇αgµν= 0,
# ∇α – # # xα ( ,
. 4-5).
2) . . 0 ,
, ",
# & . ,
A
, # # (2)#:
# Aαµν=−Aµαν=−Aανµ=−Aνµα= A[αµν] . . % #
:
(10)
$ # A
# #:
(11) Aαµν=−εαµνσAσ
# Aµ – # , εαβµν – 2 3 .
Aµ # # :
(12) Aµ=−
εµαβγAαβγ( # ’ , # # ’ aµ:
(13) aµ= qˆAµ
# qˆ – ’ #. . ! (13)
’ . % qˆ #
# ! # , , &
( A
~ Aµ ~ 1/qˆ ).1 " (9) # :
(14) Ωα⋅µν= 2∆α[µν] = 2iAα⋅µν
$ # "
. * # ,
#
∆αµν #
# , # Γµαν ( , . 6).
3) % . 1 - # # ( , . 7): (15) Rα⋅µβν=∂β∆αµν−∂ν∆αµβ+∆ατβ∆τµν−∆ατν∆τµβ | ∆αµν |
1 - &# " - R
:(16) Rµν=∂σ∆σµν−∂ν∆σµσ+∆στσ∆τµν−∆στν∆τµσ | |||
. " (9) - # ( , . 8): (17) Rµν= R~µν+ Rˆµν ~ (18) Rµν=∂σΓµσν−∂νΓµσσ+ΓτσσΓµτν−ΓτσνΓµτσ (19) Rˆµν= i∇~σAσ⋅µν− Aτ⋅σµAσ⋅τν | # # | ||
~ 4# Rµν – - ; Rˆµν – | - , | ||
( ). . | ∇~α | ||
# (# Γµαν). (11) , (20) Aτ⋅σµAσ⋅τν=−2(AµAν− gµνAαAα) | ! | ||
. (17), (18), (19) (20) - , #: ~ (21) R(µν) = Rµν+ 2(AµAν− gµνAαAα) (22) R[µν] = i∇~σAσ⋅µν | |||
% # (21) (22), - | |||
# , | . | ||
, - Fµν, # - # : (23) Rµν= R(µν) + iFµν (24) Fµν=∇~σAσ⋅µν |
1 Fµν , #
Fµν:
(25) Fµν=
1εµναβFαβ2
* (24) (11), & &#, # - (25) :
, # " ’ .
. (13) (26) " ’ fµν
# # #
- :
. - (21)
# :
(28) R = gµνR(µν) = R~ − 6 AαAα
# R~ = R~µ⋅µ – .
1 , # ’ , # #
& ’ . * ’ ’
( ), "
’ – - .
Aµ # -
Fµν & ’ aµ
" fµν, & & ’ .
4 , # -
, ,
:
(29) δ LG − g d 4 x = 0# LG – # . 2 , - , # ,
(29). 2 LG , ( ! ,
- .
* & ’- ( , . 9-10)
- :
(30.1) Rc
(30.2) Rc
RµνRαβ(30.3) Rc
(30.4) Rc(4) ≡δα⋅β⋅γ⋅λ⋅µνστRµνRαβRστRγλ
* " & - #
#, , " & #
. & "& & - (30) # # . * Rc(1) (30.1) # R . (28) (13)
:
(31) Rc(1) = R = R~ −6AαAα= R~ −
qˆ62 aαaα$ Rc(2) (30.2) δα⋅β⋅µν &
# - ,
(22) | (24) | ’ ! |
R[µν] = iFµν. | ’ | !, (25) (27), &# : |
(32)
Rc(2) fαβfαβ qˆ & (31) (32) #, | - Rc(1) | |||
Rc(2) # &# | # | # | ||
. $ | R~ , # | &# | ||
( ! , # | " fαβfαβ, | |||
’ | . 1 |
# & # & & - Rc(1)Rc(2) , " !
# .
3 LG
. (§ 2). . ’ #
# L2(R) , # :
(33) L2 =(R − R0 )2 = R2 − 2R0R + R02
# R0 – . 2 LG L2
&
- :
(34) LG = L2 (Rn →Rc(n) )=Rc(2) −2R0Rc(1) + R02
$ (34) # # & " #
(33). * R0 , &# LG ,
# ,
. . " (31) (32) #
#: