Смекни!
smekni.com

Высокотемпературная сверхпроводимость 2 (стр. 7 из 7)

Зовнiшнiй бак , в якому знаходиться рiдкий азот, служить екраном, який зменшуе витрати гелiю, який знаходиться у внутрiшньому бацi , за рахунок нагрiву випромiнюванням. Зв'язок резонатора з зовнiшнiм колом забезпечувався хвилеводним трактом. В кріостаті розташовані два резонатори: (8) - вимірювальний резонатор, який призначений для вимірювання поверхневого опору Rs, а (9) - опорний резонатор, який використовується для стабілізації частоти НВЧ-генератора (1). Обидва резонатори знаходяться в середині надпровідного магніта, виготовленого з ніобій-тиатнової (NbTi) проволоки, який підключений до блоку живлення (10).

З виходу вимірювального резонатора (8) сигнал надходить до модулятора (11) і після модуляції, через детектор (12), сигнал поступає на нановольтметр (13), який використовується для виміру частоти сигналу, який пройшов через вимірювальний резонатор (8). Нановольтметр працює в режимі синхронной модуляції, для цього одночасно через детектор (12) і з виходу НЧ-генератора (14) подаються сигнали на вхід нановольтметра. З виходу нановольтметра сигнал через блок підсилення (15) подається на вхід осцилографа (16) і на самописець (17).

В ходi експерименту буде вимiрюватись напiвширина резонансноi лiнiї резонатора, як iз зразком ВТНП, так i при замiщеннi його еталонним мiдним зразком в залежностi вiд температури. Спосiб вимiрювання напiвширини резонансноi лiнiї полягає у наступному ( рис.2.2.2 ). Сигнал з генератора НВЧ (1) надходить на резонатор у крiостатi (8) через атенюатор (7). Одночасно, через направлений вiдгалуджувач (4) сигнал з генератора iде на частотомiр прямого вiдлiку (5). За допомогою атенюатора виставляється рiвень затухання сигналу -3дБ. Перестроюючи частоту генератора (1), досягається спiвпадання резонасноi частоти резонатора з частотою генератора, яке фiксуватиметься по максимальному вiдхиленню стрiлки нановольтметра (13). Пiсля цього рiвень затухання зменшується до 0 дБ, i, перестроюючи частоту генератора спочатку на один, а потiм на другий схил резонансноi кривоi, встановлюватимуся частотнi вiдмiтки f1 i f2 на рiвнi 0,5 потужностi.

По одержаним даним розраховуватися значення власної добротностi резонатора. Iз врахуванням геометрii резонатора поверхневий опiр зразкiв визначався з формули

, (2.2.1)

Рис. 2.2.2. Вимірювання власної добротності резонатора.

Висновки.

1. Проведений огляд літератури на тему дипломної роботи « Дослідження поверхневого імпедансу високотемпературних надпровідників ».

2. Проведено ознайомлення з структурною схемою майбутньої установки по дослідженню поверхневого імпедансу високотемпературних надпровідників.

3. Створений кріостат для проведення низькотемпературних досліджень поверхневого імпедансу плівок ВТНП:

а) розроблена схема регулювання захолодження надпровідного магніта до температури рідкого азоту.

б) створена схема індикації рівня рідкого гелію в кріостаті.

в) проведено відкачування вакуумної порожнини кріостата і результати відкачування дають змогу стверджувати про готовність кріостата до монтажу інших елементів схеми в кріостаті.

Література.

1. Шмидт В.В., Введение в физику сверхпроводников, М.: Наука, 1982

2. Сивухин Д.В. Общий курс физики.Электричество.-Москва: Наука, 1983, с.332-343.

3. Менде Ф.Ф., Спицын А.И. Поверхностный импеданс сверхпроводников.- Киев: Наук. думка, 1985, 240с.

4. Менде Ф.Ф., Бондаренко Н.Н., Трубицын А.В. Сверхпроводящие и охлаждаемые резонансные системы.-Киев:Наукова думка,1976,272с.

5. Высокотемпературная сверхпроводимость. Фундаментальные и прикладные исследования. Под ред. проф. Киселева А. А.- Ленинград: Машиностроение, 1990, с.7-60

6. Ван Дузер Т., Тернер Ч.У. Физические основы сверхпро водниковых устройств и цепей.- Пер. с англ. М.: Радио и связь, 1984, 344с.

7. Гольдштейн Л.Д., Зернов Н.В. Электромагнытные поля и волны., М.: Сов.радио, 1971.

8. Coffe, J.R. Clem, Phys. Rev. Latt. , 1991, v.67, 386p.

9. Головашкин А.И. и др. СВЧ свойства высокотемпературных сверхпровдников и использование их для резонансных устройств.- Препринт N217, Москва: ФИАН, 1988, 41с.

10. Лихарев К.К., Черноплеков Н.А. Перспективы практического применения высокотемпературной сверхпроводимости.- Ж.Всес. хим. о-ва им.Менделеева,., т.34., N 4, 1989, с.446-450.

11.Лихарев К.К., Семенов В.К. Новые возможности для сверхпроводниковой электроники.-Сер. Сверхпроводимость,М.: ВИНИТИ, т.1, 1988.

12. Вендик О.Г.. Письма в ЖТФ, 1989, т. 15, №8, с.72.

13. Вендик О.Г.. Письма в ЖТФ,1988, т. 14, №12, с.1098.

14. Киттель Ч.. Введение в физику твердого тела. М.: Наука, 1978.-792с.

15. Вендик О.Г.. Сверхпроводимость: физика, химия, техника. 1990, т.3, №10, с. 2133.

16. Буккель В.. Сверхпродимость. М.: Мир,1975, с. 179-185, 193-199.

17. Давыдов А.С.. Высокотемпературная сверхпроводимость. К.: Наукова думка, 1990, с.9-13, 104.

18. Мелков Г.А., Касаткин А.Л., Малышев В.Ю. Физика низких температур, 1994, т.20, №9, с. 868