Рассмотрим вращающийся диск (рис. 11.3а). Пусть ось вращения диска совпадает с осью z. При малых угловых скоростях линейная скорость пропорциональна радиусу.
По мере увеличения угловой скорости возрастает линейная скорость периферийных слоев, которая в соответствии со СТО не может превышать скорость света. По этой причине угловая скорость внешних слоев будет меньше, чем внутренних. Это должно привести к возникновению внутренних напряжений и, в конечном счете, к разрушению диска. Такова суть парадокса Эренфеста.
Прежде, чем переходить к другому парадоксу, процитируем [3]:
«Здесь же полезно провести простое рассуждение, наглядно иллюстрирующее неизбежность возникновения неевклидовости пространства при переходе к неинерциальным системам отсчета. Рассмотрим две системы отсчета, из которых одна (К) инерциальна, а другая (К') равномерно вращается относительно К вокруг общей оси z. Окружность в плоскости x, y системы К (с центром в начале координат) может рассматриваться и как окружность в плоскости x', y' системы К'. Измеряя длину окружности и ее диаметр масштабной линейкой в системе К, мы получаем значения, отношение которых равно π, в соответствии с евклидовостью геометрии в инерциальной системе отсчета. Пусть теперь измерение проводится неподвижным относительно K' масштабом. Наблюдая за этим процессом из К, мы найдем, что масштаб, приложенный вдоль окружности, претерпевает Лоренцево сокращение, а радиально приложенный масштаб не меняется. Ясно поэтому, что отношение длины окружности к ее диаметру, полученное в результате такого измерения, оказывается больше π»
Проиллюстрируем этот вывод. Итак, пусть по краю диска на равном расстоянии размещены 10 лампочек (рис. 11.3b). При релятивистских скоростях расстояние между ними должно уменьшаться. Если v / c ≈ 0,6, то, сфотографировав диск, мы должны увидеть на снимке 12 лампочек. Какие из них сумели «сфотографироваться» дважды?
Обратимся теперь к рис. 11.2. Если условно «развернуть» круговое движение тела в прямолинейное, то наблюдатель (покоящийся на оси вращения) как бы мгновенно «перескакивает» из положения «наблюдатель № 1» к положению «наблюдатель № 2» и так далее (см. рис. 11.2). Он будет видеть движение объекта с галилеевской скоростью, причем угол аберрации сохраняется для него постоянным. Объект наблюдения будет всегда находиться в зените, т.е. на линии, перпендикулярной траектории. Никакой лоренцевской скорости он не обнаружит и не измерит.
Этот парадокс имеет непосредственное отношение к работе ускорителей элементарных частиц. Пусть заряженная частица влетает в область однородного магнитного поля и далее движется по окружности. Здесь возможны 3 варианта интерпретации движения (рис. 11.4). Рассмотрим их.
Вариант первый. Рассмотрим сначала классический способ отображения. Частица, летящая с галилеевской скоростью V, подлетает к точке А и затем с той же скоростью движется по окружности в магнитном поле.
Вариант второй. Отображение с помощью световых лучей имеет особенность. К точке А частица подлетает с лоренцевской скоростью v (наблюдаемая, кажущаяся скорость). После ее прохождения частица мгновенно принимает галилеевскую скорость V и с этой скоростью движется по окружности. Здесь мы будем наблюдать галилеевскую скорость даже с помощью световых лучей.
Вариант третий - современный подход. Частица (как до точки А, так и после нее) имеет лоренцевскую скорость движения v. Кажется, что непрерывность скорости здесь существует. Но, как мы показали выше, это самообман: лоренцевская скорость есть кажущаяся скорость (наблюдаемая с помощью световых лучей). При такой интерпретации скорость должна испытывать скачок в точке А. Это необходимо учитывать при анализе циклических ускорителей.
Мы процитируем критические замечания А.В. Мамаева [4], касающиеся работы циклических ускорителей. Хотя мы по разному относимся к решению релятивистских проблем, но его критические замечания считаем квалифицированными. Мамаев следующим образом оценивает характеристики армянского ускорителя (синхротрон АРУС) и объяснение его работы. Цитируем:
«Интересующие нас технические характеристики электронного синхротрона АРУС имеют следующие значения. (Быстров Ю. А., Иванов С. А. Ускорительная техника и рентгеновские приборы. - М.: Высшая школа, 1983. - с. 159 - - 162):
• - длина орбиты 2πR = 216,7 м;
• - энергия инжекции электронов W = 50 МэВ;
• - частота ускоряющего поля f = 132,8 МГц;
• - кратность ускорения g = 96;
• - энергия покоя электрона E0 = 0,511 МэВ.
Согласно формуле (10.4), вытекающей из специальной теории относительности, частота обращения электронных сгустков по орбите ускорителя АРУС в момент инжекции электронов при кинетической энергии электронов W = 48,55 МэВ будет равна
fSRT ==1,3843МГц (11.9) W2πR( +1) E
А согласно формуле (10.3), вытекающей из новой теории пространства-времени, частота обращения электронных сгустков по орбите ускорителя АРУС в момент инжекции электронов с кинетической энергией W = 48,55 МэВ будет равна
c0 (1+W / E0 ) 2 −1f ==132,8МГц (11.10)
2πR
т. е. по новой теории пространства-времени частота обращения электронных сгустков в ускорителе АРУС в момент инжекции электронов точно равна частоте ускоряющего поля.
Но в настоящее время специальная теория относительности считается абсолютно истинной теорией и поэтому частота обращения электронных сгустков в момент инжекции электронов в ускоритель АРУС считается равной значению 1,3843МГц, рассчитанному по формуле (11.9), вытекающей из специальной теории относительности.
Однако если на траектории движения электронных сгустков в ускорителе АРУС установить мишень, то период облучения этой мишени электронными сгустками при W = 48,55 МэВ окажется равным не величине
TСТО = 1/fСТО = 1/(1,3843 MГц) = 722,39 нс (11.11) соответствующей частоте обращения 1,3843 МГц, а величине
T = 1/f = 1/(132,8 MГц) = 7,53 нс, (11.12)
т. е. величине, соответствующей частоте обращения сгустков по новой теории пространства-времени.
Но период 7,53 нс обращения электронных сгустков по орбите длиной 216,7 м означал бы, что электроны движутся со скоростью, в 96 раз большей скорости света c0. Согласно же специальной теории относительности сверхсветовые скорости электронов невозможны.
Поэтому для того, чтобы объяснить экспериментальное значение периода облучения мишени 7,53 нс в рамках специальной теории относительности, потребовалось ввести понятие "кратность ускорения" и объявить, что "под действием ускоряющего поля частицы инжектированного пучка распадаются на сгустки, группирующиеся вокруг устойчивых равновесных фаз. Число таких сгустков, располагающихся по окружности ускорителя, равно кратности ускорения g". (Бурштейн Э. Л. Ускорители заряженных частиц // Большая советская энциклопедия, 3-е изд., т. 27. - М.: Советская энциклопедия, 1977. - с. 108).
И действительно, разделив величину из выражения (11.11) на величину из выражения (11.12), получим g = 96 - кратность ускорения электронного синхротрона АРУС. А, разделив величину из выражения (11.6) на величину из выражения (11.7), получим, что кратность ускорения протонного синхротрона ЦЕРН в эксперименте равна 19. (Test of the second postulate of special relativity in the GeV region / Alvager T., Farley F., Kjellman J., Wallin J. // Physical Letters. - 1964. - v. 12. –No. 3. - p. 260 -262)
Таким образом, экспериментальные значения частоты обращения сгустков элементарных частиц в рассмотренных двух ускорителях подтверждают не формулу (11.4) из специальной теории относительности, а формулу (11.3) из новой теории пространства-времени. Для объяснения же экспериментальных значений частоты обращения сгустков элементарных частиц в рамках специальной теории относительности и согласования этих значений с формулой (11.4) используется специальная гипотеза, основанная на введении ad hoc понятия "кратность ускорения"».
Мы уже говорили, что современное объяснение работы циклических ускорителей опирается на третий вариант. В результате физики сталкиваются с проблемой «скачка реальной скорости» в точке А (рис. 11.4 а, с), которая появляется в третьем варианте. Вот и приходится теоретикам вводить гипотезу ad hoc о существовании кратности ускорения – g. На самом деле никакого «распада на сгустки, группирующиеся вокруг устойчивых равновесных фаз» в синхротроне не существует. Это домысел.
Действительные (галилеевские) скорости частиц превышают скорость света в вакууме.
Мы поставим следующую задачу. Будем искать класс преобразований 4-координат, при которых уравнения Максвелла сохраняют свою форму в соответствии с принципом Галилея-Пуанкаре [5]. Задача существования преобразования уже решена, т.к. существует преобразование Лоренца.
Фактически задача сводится к сохранению неизменной формы оператора волнового
1 ∂ 2
уравнения Δ −
2 2 = 0 при переходе из одной инерциальной системы отсчета в другую. с ∂t