Для расчётов эффектов туннелирования таких многоразмерных квантовых систем удобно использовать квазиклассическое представление волновой функции в виде ψ~exp(iS), S—классическое действие системы. Для туннельного эффекта существенна мнимая часть S, определяющая затухание волновой функции в классически недоступной области. Для её вычисления используется метод комплексных траекторий.
Квантовая частица, преодолевающая потенциальный барьер может быть связана с термостатом. В классической механике это соответствует движению с трением. Тем самым, для описания туннелирования необходимо привлечение теории, получившей название диссипативной квантовой механики. Такого рода соображения необходимо использовать для объяснения конечного времени жизни токовых состояний контактов Джозефсона. В этом случае происходит туннелирование эффекта квантовой частицы через барьер, а роль термостата играют нормальные электроны.
Список литературы
1. Д. И. Блохинцев “Основы квантовой механики”. – М.: Наука, 1976.
2. А. А. Соколов, И. М. Тернов “Квантовая механика и атомная физика”. Учебн. пособие для физ.-мат. фак-тов пединститутов. М.: Просвещение, 423 с. с илл., 1970.
3. П. Эткинс “Кванты справочник концепций”. – М.: Мир, 496 с., 1977.
4. Гоголинский К. “Орбитали зондовой микроскопии”/ К. Гоголинский, В. Решетов// Вокруг Света, М.: Вокруг света.- 2005. - №6. – с. 106-114.