В зависимости от рельефа местности, места и ориентации наблюдателя, погодных условий, времени года и суток эхо изменяет свою громкость, тембр, длительность; меняется число его повторений. Кроме того, может измениться и частота звукового отклика; она может оказаться более высокой или, напротив, более низкой по сравнению с частотой исходного звукового сигнала.
Не так просто отыскать место, где эхо отчетливо слышно и один раз. В России, впрочем, найти подобные места сравнительно легко. Есть много равнин, окруженных лесами, много полян в лесах; стоит громко крикнуть на такой поляне, чтобы от стены леса донеслось более или менее отчетливое эхо.
В горах эхо бывает разнообразнее, чем на равнинах, зато встречается гораздо реже. Услышать эхо в горной местности труднее, чем на окаймленной лесом равнине.
Если представить, что человек находится у подножия горы, а препятствие, которое должно
Другое дело, если
Разыскивание эхо на неровной местности требует известной сноровки. Даже найдя благоприятное место, надо еще уметь эхо вызвать. Прежде всего, не следует помещаться чересчур близко к препятствию: надо, чтобы звук прошел достаточно длинный путь, иначе эхо вернется слишком рано и сольется с самим звуком. Зная, что звук проходит 340 м в секунду, легко понять, что, поместившись на расстоянии 85 м от препятствия, мы должны услышать эхо через полсекунды после звука.
Хотя эхо родит «на всякий звук свой отклик в воздухе пустом», но не на все звуки откликается оно одинаково отчетливо. Эхо не одинаково, «ревет ли зверь в лесу глухом, трубит ли рог, гремит ли гром, поет ли дева за холмом». Чем резче, отрывистее звук, тем эхо отчетливее. Лучше всего вызвать эхо хлопаньем в ладоши. Звук человеческого голоса для этого менее пригоден, особенно голос мужчины; высокие тона женских и детских голосов дают более отчетливое эхо.
Существует эффект порхающего эха в больших помещениях размером 20 и более метров, когда имеются две параллельные гладкие стены, или потолок и пол, между которыми находится источник звука. Он называется флаттер.
В результате многократного отражения в точке приема звук периодически усиливается, а на коротких импульсных звуках, в зависимости от частотных компонент эха и интервала между ними, приобретает характер дребезга, тресков или ряда последовательных и затухающих сигналов эха.
5.Практическое применение. Эхолокация:
Долгое время человек не извлекал из эха никакой пользы, пока не придуман был способ измерять с помощью его глубину морей и океанов. Изобретение это зародилось случайно. В 1912 году затонул почти со всеми пассажирами огромный океанский пароход «Титаник»,— затонул от случайного столкновения с большой льдиной. Чтобы предупредить подобные катастрофы, пытались в туман или в ночное время пользоваться эхом для обнаружения присутствия ледяной преграды впереди судна. Способ на практике себя не оправдал, "зато натолкнул на другую мысль: измерять глубину морей с помощью отражения звука от морского дна. Мысль оказалась очень удачной.
На рисунке, изображенном ниже, показана схема установки. У одного борта корабля помещается в трюме, близ днища, патрон, порождающий при зажигании резкий звук. Звуковые волны несутся сквозь водную толщу, достигают дна моря, отражаются и бегут обратно, неся с собой эхо. Оно улавливается чувствительным прибором, установленным, как и патрон, у днища корабля. Точные часы измеряют промежуток времени между возникновением звука и приходом эхо. Зная скорость звука в воде, легко вычислить расстояние до отражающей преграды, то есть определить глубину моря или океана.
Эхолот, как назвали эту установку, совершил настоящий переворот в практике измерения морских глубин. Пользование глубомерами прежних систем возможно было лишь с неподвижного судна и требовало много времени. Лотлинь приходится спускать с колеса, на котором он намотан, довольно медленно ( 150 м в минуту); почти так же медленно производится и обратный подъем. Измерение глубины в 3 км этим способом отнимает 3/4 часа. С помощью эхолота тоже измерение можно произвести в несколько секунд, на полном ходу корабля, получая при этом результат, несравненно более надежный и точный. Ошибка в этих измерениях не превосходит четверти метра (для чего промежутки времени определяются с точностью до 3000-й доли секунды).
Если точное измерение больших глубин имеет важное значение для науки океанографии, то возможность быстро, надежно и точно определять глубину в мелких местах является существенным подспорьем в мореплавании, обеспечивая его безопасность: благодаря эхолоту судно может смело и быстрым ходом приближаться к берегу.
В современных эхолотах применяются не обычные звуки, а чрезвычайно интенсивные «ультразвуки», неслышимые человеческим ухом, с частотой порядка нескольких миллионов колебаний в секунду. Такие звуки создаются колебаниями кварцевой пластинки (пьезокварца), помещенной в быстропеременное электрическое поле.
Поскольку звуковые волны в воздушной среде обладают постоянной скоростью распространения (около 330 метров в секунду), время, необходимое звуку для возвращения может служить источником данных об удалении предмета. Чтобы определить расстояние до предмета в метрах, необходимо засечь время в секундах до возвращения эха, разделить его на два (звук проходит расстояние до предмета и обратно) и умножить на 330 — получится примерное расстояние в метрах. На этом принципе основана эхолокация, применяемая, в основном, для промеров глубины водоемов (в этом случае нео бходимо учитывать, что в воде звуковые волны распространяются быстрее, чем в воздухе). Но неверно определять расстояние до молнии по разнице во времени между молнией и громом. Ударная волна движется быстрее скорости звука.
Эхолокация может быть основана на отражении сигналов различной частоты — радиоволн, ультразвука и звука. Первые эхолокационные системы направляли сигнал в определённую точку пространства и по задержке ответа определяли её удалённость при извесной скорости перемещения данного сигнала в данной среде и способности препятствия, до которого измеряется расстояние, отражать данный вид сигнала. Обследование участка дна таким образом при помощи звука занимало
значительное время.
Сейчас используются различные технические решения с одновременным использованием сигналов различной частоты, которые позвляют существенно ускорить процесс эхолокации.
Животные используют эхолокацию для ориентации в пространстве и для определения местоположения объектов вокруг, в основном при помощи высокочастотных звуковых сигналов. Наиболее развита у летучих мышей и дельфинов, также её используют землеройки, ряд видов ластоногих (тюлени), птиц (гуахаро, саланганы и др.).
Данный способ ориентации в пространстве позволяет животным обнаруживать объекты, распознавать их и даже охотиться в условиях полного отсутствия света, в пещерах и на значительной глубине.
Радиоволны также обладают возможностью отражаться от непрозрачных для радиоволн (металл, ионосфера или др.) поверхностей — на этом свойстве радиоволн основана радиолокация.
Эхо является существенной помехой для аудиозаписи. Поэтому стены комнат, в которых проходит запись песен, радиорепортажей, а также начитка текстов телерепортажей, обычно оборудуются звукогасящими экранами из мягких или ребристых материалов, поглощающих звук. Принцип их работы в том, что звуковая волна, попадая на такую поверхность, не отражается обратно, затухает внутри за счёт вязкого трения газа. Этому особенно способствуют пористые поверхности выполненные в виде пирамид, так как даже отражённые волны переизлучаются вглубь впадины между пирамидами и дополнительно ослабляются при каждом последующем отражении.
Эхолокация может быть основана на отражении сигналов различной частоты — радиоволн, ультразвука и звука. Первые эхолокационные системы направляли сигнал в определённую точку пространства и по задержке ответа определяли её удалённость при извесной скорости перемещения данного сигнала в данной среде и способности препятствия, до которого измеряется расстояние, отражать данный вид сигнала. Обследование участка дна таким образом при помощи звука занимало значительное время.
Сейчас используются различные технические решения с одновременным использованием сигналов различной частоты, которые позвляют существенно ускорить процесс эхолокации.