Смекни!
smekni.com

Аналитические весы (стр. 2 из 8)

данных, то режим чтения (RD) "жестко" избран неактивным, посред-

ством подключения этого вывода, через токоограничивающий резистор

R12 (1.8 кОм) к питанию +5В, а режим избранности микросхемы (CS) -

активным, подключением его к общему проводу, так как это един-

ственная избираемая в устройстве весов микросхема. Адрес одного

из четырех портов микпосхемы D2 (3 - порт программирования режима

ее работы CW, 2 - порт С, 1 - порт В и 0 - порт А) избирается не-

посредственно с выводов P2.4 и P2.5 ОЭВМ. Исполнение команд про-

изводится при переходе сигнала записи (WR) с потенциала +5В к ну-

левому потенциалу с вывода P2.6 ОЭВМ КР1816ВЕ51.

Временная диаграмма вывода данных в один из избранных портов

микросхемы КР580ВВ55А в режиме 0 приведена на рис. 1а [3]. Микро-

схема КР580ВВ55А имеет три режима обмена: 0, 1 и 2, из которых нам

подходил только нулевой режим, при котором однонаправленный вывод

производится через любой из портов без каких либо сигналов сопро-

вождения (без квитирования) и выходная информация защелкивается в

выходной буфер порта по срезу сигнала WR и остается на выходе это-

го порта до следующего изменения.

__ t

WR +5В

__ +5В

CS

+5В

D

+5В

A0,A1

+5В

А,В,С,CW

Рис. 1а. Временная диаграмма вывода данных через порт

А, В, С или CW микросхемы КР580ВВ55А

На этой диаграмме черточкой сверху обозначены сигналы, актив-

ные при нулевом потенциале, Н - образный переход сигналов означает,

что если сигналы изменяются, то они должны быть изменены сдесь. Вре-

мя t мы подобрали экспериментально, и оно должно быть не менее 2-х

микросекунд, точное время между остальными сигналами не имеет ника-

кого значения - важна лишь их точная последовательность.

БЛОК ПИТАНИЯ

В настоящей работе мы стремились к максимальному использованию

известных и хорошо зарекомендовавших себя разработок, доступных нам

через открытые литературные источники. Так например, электрическая

принципиальная схема излучателя инфрокрасного диапазона заимствована

нами из принтера СМП 6327 [5], а приемника - из схемы бытового теле-

визионного приемника [6], включая также и простое заимствование бло-

ка питания из списанного накопителя на пятидюймовых гибких магнитных

дисках ЕС5321М советского производства [7], достаточно мощного и на-

дежного, принципиальная электрическая схема которого представлена на

рис. 2.

В этой схеме переменное напряжение 220 В через выключатель и

предохранитель FU1 (1 А) поступает на первичную обмотку трансформа-

тора ТПП288-220-50. Из нескольких вторичных обмоток этого трансфор-

матора набираются выходные напряжения переменного тока в 19 и 7

Вольт, которые подаются на два диодных моста, собранных из кремни-

евых диодов КД205В. На выходе с диодных мостов мы имеем выпрямленные

постоянные напряжения со значительными пульсациями, для подавления

которых в цепь параллельно мостам диодов включены электролитические

емкости: С1 (10000 мкФ 50 В) и С2 (2000 мкФ 50 В). В момент времени

когда с выхода диодного моста напряжение возрастает емкости заряжа-

ются, а когда напряжение начинает снижаться стекание заряда с обкла-

док электролитического конденсатора сглаживает проявление этих пуль-

саций на входе стабилизаторов, собранных на резисторах R1, R2 (1 Ом),

емкостях С3...С6 (0,1 мкФ), транзисторах VT1, VT2 (КТ818БМ), микро-

схемах D1 (КР142ЕН8Б), D2 (КР142ЕН5А и емкостях С7, С8 (200 маФ).

Принцип работы стабилизатора следующий: микросхема D1 (D2)

управляет током, протекающим через малоомный резистор R1 (R2), тем

самым изменяя смещение перехода база-эмитер транзистора VT1 (VT2)

и поддерживая на его выходе стабильное значение требуемого для наг-

рузки выходного напряжения питания 12 (5) Вольт. Наличие мощных

транзисторов VT1 и VT2 вызвано требованиями обеспечения больших то-

ков, необходимых в накопителе на гибких магнитных дисках [7] при

запуске его двигателей. Такой блок питания наиболее оптимально под-

ходит и для аналитических весов, в которых также наблюдается крат-

ковременные всплески потребления больших токов протекающих через

катушку устройства взвешивания и цепи цифроаналогового преобразова-

теля.

Емкости С7, С8 включены для сглаживания импульсных пульсаций

нагрузок на стабилизатор, а С5, С6 в качестве фильтра высокочастот-

ных помех.

Предохранитель FU1 защищает сеть переменного тока от перегру-

зок, скажем при коротком замыкании на вторичных обмотках трансформа-

тора, а FU2 и FU3 - блок питания, при перегрузках в питаемых через

них схемах.

ЦИФРОАНАЛОГОВЫЙ ПРЕОБРАЗОВАТЕЛЬ

Наиболее оптимальным было бы использование в качестве цифро-

аналогового преобразователя спецализированной микросхемы, что су-

щественно упростило бы электрическую принципиальную схему аналити-

ческих весов и избавило нас от проблемы решения множества проблем,

связанных с этим преобразованием. Например, микросхемы К572ПА1,

К594ПА1 [2] советского производства или импортного производства:

DAC-01 и DAC-02 (фирма Precision Monolitic), MC1406 (Motorola),

HI-1080 и HI-1090 (Harris Semiconductor), AD-562 и AD-7520 (Analog

Devices) [8], или более современные MX7534, MX7535, MX7536, MX7538

(Maxim) [9]. Однако лучшие из этих чипов гарантируют разрешение с

точностью не более 14 разрядов, что явно недостаточно для обеспе-

чения аналитической точности взвешивания в диапазоне 0...200 грамм.

Для обеспечения указанных требований мы должны разработать

принципиальную электричестую схему 21-го разрядного цифроаналого-

вого преобразователя.

Существует два наиболее широко распространенных метода циф-

роаналогового преобразования: с использованием взвешенных резист-

ров и многозвенной цепочки резистров [8].

На рис. 3 представлена принципиальная электрическая схема

цифроаналогового преобразователя с двоично-взвешенными резистора-

ми, которая состоит из n ключей, по одному на каждый разряд, уп-

равляемых выходным сигналом; цепочки двоично-взвешенных резисто-

ров; источника опорного напряжения Uоп и суммирующего операцион-

ного усилителя, на выходе которого получается аналоговый сигнал,

пропорциональный цифровому коду на входе.

В идеальной ситуации ток, на входе операционного усилите-

ля будет равен

An-1хUоп An-2хUоп A1хUоп A0хUоп

I = __________ + __________ + . . . + ________ + ________ .

R R R R

В нашем случае, для 21-разрядного цифроаналогового преоб-

разователя, диапазон изменения сопротивлений резисторов должен

будет соответствовать ряду: 1,2,4,8,...,524288,1048576 Ом. У нас

не было возможности точного подбора такого широкого ряда резис-

торов тем более, что они должны быть все изготовленны по одной

технологии, в связи с чем этот метод построения цифроаналогово

преобразователя - неприемлем.

На рис. 4 представлена принципиальная электрическая схема

цифроаналогового преобразователя с многозвенной цепочкой резис-

торов. В этой схеме использование цепочки резисторов R-2R, при-

водит к тому, что вклад каждого разряда в выходной сигнал про-

порционален его двоичному весу.

Поскольку эта цепочка резисторов является линейной цепью,

то ее работу можно проанализировать методом суперпозиции, то есть

вклад в выходное напряжение от каждого источника рассматривать

независимо от других источников. Окончательно все вклады от каж-

дого разряда суммируются для получения на выходе результата в

виде напряжения Uвых [8].

Таким образом, выходное напряжение цифроаналогового преоб-

разователя пропорционально сумме напряжений со своими весами,

обусловленных лишь теми ключами, которые подключены к источнику

Uоп.

Для нашего 21-разрядного цифроаналогового преобразователя

простое механическое копирование этой схемы невозможно, так как

самые лучшие чипы операционных усилителей LM101A, LF156A или

LM118 не способны обеспечить требуемого разрешения - их предел

14-ть разрядов и 8...12 разрядов - для микросхем операционных

усилителей советского производства (К153УД2, К140УД18 и других).

Можно было бы разработать двухплечевую схему с использованием

на выходе одного из плеч делителя напряжения, но такой подход

приведет к множеству проблем, связанных с обеспечением идентич-

ности плеч и тому подобных. Поэтому мы решили удалить из схемы

приведенной на рис. 4 операционный усилитель, заменив предшест-

вующий ему резистор 2R, многозвенной цепи, катушкой устройства

взвешивания.

Тогда для обеспечения изменения тока на выходе цифроана-

логового преобразования достаточно больших номиналов тока, до

3,5 А, мы должны подобрать пары 2R/R с таким расчетом, чтобы ве-

личина R составляла значение немного большее 1 Ома, при этом ре-

зисторы 2R должны иметь коэффициент деления как можно ближе к

двум, особенно в старших значащих разрядах. Кроме этого, резис-

торы должны быть мощными МЛТ-1 или МЛТ-2, чтобы избежать их вы-

горания при прохождении больших токов.

Подбор номиналов резисторов мы производили с использовани-

ем цифрового измерителя L, C, R Е7-8 из нескольких тысяч резис-

торов, номинала 1,4 и 2,7 Ом, во всех организациях города, в

которых нам удалось их найти: АО ССГПО (6 подразделений), Руд-

ненский индустриальный институт, Рудненский политехнический кол-

ледж и других. Тип и номиналы этих резисторов определяли их ред-

кое использование и поэтому по причине их отсутствия или дефицит-

ности нам не отказали ни в одной из упомянутых организаций.

После продолжительной и утомительной работы нам удалось по-

добрать многозвенную 21-разрядную цепочку сопротивлений, значения

сопротивлений которых сведены в табл. 1.

Таблица 1

Подобранные номиналы резисторов многозвенной цепочки

цифроаналогового преобразователя

Разряд Номиналы резисторов Коэффициент Средние зна-

NN цепи, Ом делимости чения, Ом

20 2,246 1,123 2,000