Смекни!
smekni.com

Ионоселективные электроды (стр. 3 из 4)

В электродах с жидкими мембранами к мембранному веществу предъявляется одно требование, так как если какой-либо ион способен вообще существовать в фазе мембраны, то он в ней будет двигаться по закону диффузии, и поэтому проблема обеспечения подвижности интересующего иона в мембране сама собой разрешается. Селективность жидких мембран будет определяться ограничением внедрения посторонних ионов в поверхность мембраны. Так как жидкая фаза находится в контакте с водными растворами, она должна быть нерастворимой в воде и иметь низкое давление паров, чтобы избежать интенсивного ее испарения. Эти требованиям могут отвечать жидкие органические вещества обладающие сравнительно большим молекулярным весом и низкими диэлектрическими проницаемостями.

К электродам с жидкими мембранами относятся: электроды на основе жидких катионитов; на основе жидких анионитов.

Электроды на основе жидких катионитов

Электродно-активными веществами, определяющими катионную функцию мембранных жидкостных электродов, являются органические высокомолекулярные кислоты и их соли с карбоксильной, сульфо-, фосфорно- и тиофосфорнокислыми группами. Низкая катионная селективность электродов присуща мембранам содержащим органические сульфокислоты. Гораздо большую селективность проявляют жидкие катионообменные мембран, полученный на основе солей фосфорных и тиофосфорных органических кислот в органических растворителях. Жидкостные электроды на основе дитизонатов[1] проявляют нернстовскую зависимость потенциалов и высокую селективность по отношению к ионам Cu2+, Pb2+, Zn2+, Hg2+, Ag+.

Кальций - селективный электрод - наиболее широко исследованы Са2+-электроды на основе кальциевых солей диэфиров фосфорной кислоты, в качестве растворителей используют диоктилфенилфосфонат. Этот электрод функционирует в концентрационном интервале 10-1-10-5 М Са2+, при рН=6-11. Са2+-электрод действует в присутствии ПАВ, анионов гуминовой кислоты, салицилата, фталата, фенола, мочевины. [2] Область применения Са2+-электродов - определение коэффициентов активности ионов Са2+; определение жесткости воды; определение растворимости СаSO4и СаСО3; исследование ассоциации СаSO4и MgSO4в морской воде.

Электрод, селективный по отношению к сумме катионов кальция и магния - в качестве жидкостных ионообменников применяли фосфорорганические кислоты, в качестве растворителя - дециловом спирте. Эти электроды способны обнаруживать нернстовскую зависимость потенциала от суммарной концентрации ионов Са2+ и Mg2+в интервале 10-1-10-4 М. Данный электрод используют для определения жесткости воды.

Жидкие иониты с активными группами, содержащими серу, должны были бы обладать высокой селективностью относительно ионов тяжелых металлов, которые образуют труднорастворимые сульфиды.[1]

Электроды на основе жидких анионитов

Если использовать активные группы с положительным зарядом, то можно получить селективные электроды с анионной функцией. В отличие от катионселективных электродов, почти все анионоселективные электроды получены на основе солей аминов и четвертичных аммониевых оснований, являющихся типичными жидкими анионообменниками. Эти электроды могут быть использованы для следующих анионов: ClO4-, SCN-, I-, NO3-, Br-, Cl-. Возможность изготовления электродов определяется тем, в какой степени экстрагируются аминокислоты органической фазой. Для плохо экстрагируемых полярных глицина и аланина не удалось изготовить электрод. [4]

Существует несколько разновидностей электродов с жидким анионитом. Нитрат - селективный электрод как наиболее распространенный из них будет рассмотрен более подробно.

Перхлорат - селективный электрод - электрод функционирует как обратимый по отношению к ClO4-иону в интервале концентраций 10-1-10-4 при рН=4-11. Концентрацию ClO4-ионов нельзя обнаружить в присутствии следующих ионов: MnO4-, IO4-, ReO4-, SCN-.

Фосфат - селективный электрод - применяют для определения активности HPO42-в разбавленных растворах в интервале рН=7,0-7,5.

Тетрафторборат - селективный электрод - некоторый электроды, содержащие фенантролиновую хелатную группу, можно использовать для определения BF4-в растворах. В области концентраций 10-3-10-1 М потенциал электрода отвечает на изменение концентрации BF4- . Электроды с мембранами, содержащими о-фенантролиновую группу, применяли для потенциометрического определения бора, предварительно переведенного в тетрафторборат.

Нитрат - селективный электрод

Для ионометрического определения нитрат - иона как сильногидрофобного аниона мембрана должна содержать сильногидрофобный катион. В первом нитратном электроде в качестве такого катиона использовался металлфенантролиновый комплексный катион V (мембранный растворитель нитро-n-цимол). Этот электрод можно применять для определения нитрат - ионов в интервале рН 4-7. В других нитратных электродах ионообменниками служат соли тетраалкиламмония, например нитрат аммоний - органического иона XIII. Наиболее лучшим является электрод с возобновляемой поверхностью мембраны, в котором жидкий ионообменник состоит из нитрата кристаллического фиолетового VII, растворенного в нитробензоле. Нитратные электроды чувствительны так же к нитрит - иону, мешающее влияние которого можно устранить при помощи сульфаминовой кислоты.

Нитратные электроды находят применение главным образом для контроля объектов окружающей среды. Определения нитратов в растения мешает присутствие больших количеств хлоридов, удалить которые можно, пропуская анализируемый раствор через ионообменную смолу Dowex 50-X8. При анализе растительных объектов ионометрический метод, основанный на нитровании

3,4-диметилфенола после извлечения нитратов из проб методом восстановительной дистилляции. При определении же нитрат-ионов в почвах потенциометрия с использованием ионселективных электродов уступает спектрофотометрическому методу. Нитратные электроды можно применять для определения оксидов азота после перевода в нитраты при окислении (например, под действием пероксида водорода).

Газовые электроды

Газовый электрод включает ионоселективный электрод и сравнительный электрод, контактирующие с небольшим объемом вспомогательного раствора, который отделен от исследуемого раствора газовой прослойкой или гидрофобной газопроницаемой мембраной. Существует два вида газовых электродов. Первый - ионоселективный и сравнительный электрод погружены в небольшой объем раствора определенного состава, отделенного от исследуемого раствора гидрофобной газопроницаемой мембраной. Для этого вида электродов используют два вида мембран - гомогенные, представляющие собой пленку полимера, в которой растворяется диффузионный газ, и гетерогенные, микропористые, в которых газ диффундирует фактически через воздух, заполняющий поры. В качестве мембран используют - силиконовый каучук, тефлон, полипропилен. Микропористые мембраны обладают лучшими диффузионными характеристиками по сравнению с гомогенными. Второй тип - в нем газопроницаемая мембрана заменена газовой прослойкой. В этом электроде для удержания электролита на поверхности индикаторного электрода и создания стандартной по толщине пленки в электролит вводят ПАВ или весь раствор впитывается слоем геля. В электроде с гидрофобной мембраной не требуется обновлять слой электролита на мембране индикаторного электрода после каждого измерения; электрод можно использовать в условиях протока; на показания электрода практически не влияют механические помехи (например, сотрясение); полимерная пленка защищает электрод от воздействия воздуха. В электроде с газовым зазором можно изменять толщину слоя электролита, изменяя давление головки электрода на полимерную мембрану; слой электролита на индикаторном электроде очень тонок, это значительно сокращает время отклика электрода; диффузия газа в воздушной прослойке происходит гораздо быстрее, чем в мембране из полимера; из-за отсутствия прямого контакта электрода с образцом значительно возрастает срок жизни электрода. Одним из наиболее распространенных электродов, является электрод с чувствительным элементом на аммиак. Эта электродная система включает катионоселективный электрод и гидрофобную мембрану, проницаемую для аммиака, но не проницаемую для таких ионов, как Na+, K+, NH4+. Мембрана отделяет исследуемый щелочной раствор от внутреннего раствора 0,1М NH4Cl, в который погружен стеклянный рН-электрод и хлорсеребряный электрод сравнения. Диффузия аммиака через мембрану вызывает изменение рН раствора, находящегося между мембраной и стеклянным электродом, который регистрирует это изменение рН. Электроды для определения кислорода и углекислого газа используют преимущественно в медицине.

Энзимные электроды

Энзимные электроды подобны мембранным электродным системам, чувствительным к газам. Существенное различие заключается в иммобилизации энзимов на индикаторной поверхности электрода. Успешность применения энзимного электрода зависит от иммобилизации энзима в слое геля. Существует несколько способов иммобилизации энзимов: энзим может быть закреплен в гидрофильной мембране, или поперечно связанные молекулы энзима сами образуют мембрану; энзим может быть химически связан с поверхность мембраны; возможна так же сополимеризация с другими энзимами или протеинами; образование микрокапсул в жидкой углеводородной мембране с помощью ПАВ. [4] При иммобилизации энзимов необходимо следить, чтобы не происходило процессов ведущих к денатурации ферментов, для этого необходимо измерять активность иммобилизованных энзимов, прежде чем использовать их любой индикаторной системе. Выбор индикаторного устройства в энзимном электроде зависит от того, какие вещества образуются в результате ферментативной реакции (в любом случае применяют так же один из твердых или жидких ионоселективных электродов).