Министерство общего и профессионального образования
Российской Федерации
Кабардино-Балкарский Ордена Дружбы народов Государственный
Университет им. Х.М.Бербекова
Химический факультет
на тему:
“Исследование совместного электровосстановления гадолиния и криолита в галогенидных расплавах”
Дипломник: студент 4 курса ХФ ______________Жекамухов А.Б.
Научный руководитель: доктор
химических наук, профессор
кафедры физической химии
__________________Кушхов Х.Б.
рецензент:
Нальчик 1999
Содержание
стр.
Введение……………………………………………………………………4
Глава I.
Строение и электрохимическое поведение расплавленных
галогенидных систем содержащих гадолиний и алюминий.……………6
1.1.1.Строение индивидуального расплава трихлорида гадолиния.………..6
1.1.2. Строение растворов расплава трихлорида гадолиния в хлоридах
щелочных металлов..………………………………………………..……..….8
1.1.3. Строение растворов расплава трихлорида гадолиния в хлоридно-фторидных расплавах..………………………………………………..………10
1.1.4. Строение гадолинийсодержащих фторидных расплавов.…...………11
1.2. Электрохимическое поведение гадолинийсодержащих галогенидных расплавов……………..………………………………………………..………16
1.2.1. Электрохимическое поведение гадолинийсодержащих хлоридных расплавов.…………..………………………………………………..……..16
1.2.2. Электрохимическое поведение гадолинийсодержащих фторидных расплавов.…………..………………………………………………..……..19
1.3.1. Строение и химические свойства алюминийсодержащих галогенидных расплавов.………..………………………………………………..…....21
1.3.2. Электрохимическое поведение алюминийсодержащих галогенидных расплавов.………..………………………………………………..…....24
Глава II.
Методы исследования и методика проведения экспериментов.
2.1. Выбор электрохимических методов исследования электродных процессов в расплавленных средах и применяемая аппаратура.……..…....28
2.2. Конструкция высокотемпературной кварцевой электрохимической ячейки и электродов.…………………………………………………..37
2.3. Методика получения безводного хлорида гадолиния.……………...39
Глава Ш.
Исследование совместного электровосстановления гадолиния и алюминия в галогенидных расплавах.
3.1. Исследование электровосстановления фторалюминат-иона на фоне
хлоридного расплава KCl-NaCl, влияние фторид-иона..…………...40
3.2. Исследование совместного электровосстановления фторалюминат-
иона и хлоридных комплексов гадолиния на фоне хлоридных и хлоридно-фторидных расплавов………………………………….……...46
Выводы……………………………….……………………….……………...52
Литература…………………….…….……………………….……………....53
ВВЕДЕНИЕ.
Судя по последним публикациям, нынче довольно трудно отметить те стороны жизни, где бы не находили применение редкоземельные элементы. Эти металлы и их сплавы обычно извлекаются из хлоридных и фторидных систем. Соответственно существует достаточно большое количество работ по хлоридным расплавам, однако по хлоридно-фторидным и фторидным системам, особенно по многокомпонентным фторидным расплавленным солям опубликовано довольно ограниченное число работ. [1]
На основе РЗМ получают многие уникальные материалы, которые находят широкое применение в различных областях науки и техники. Например, РЗМ используют как добавки к стали и в сплавах с другими металлами, в производстве материалов, адсорбирующих водород (например, LaNi5), как добавки к ядерным материалам, в качестве пирофорных материалов, в специальной керамике, оптических стеклах (стекла для TV-экранов), в производстве катализаторов для утилизации выхлопных газов, а также в получении магнитных материалов (например (Nd1-xDyx)15Fe77B8 или (Nd1-xDyx)15Fe76B8) и так далее.
Перечисленное выше – лишь небольшая часть из списка областей применения РЗМ. Развитие высоких технологий все более и более вовлекает использование РЗМ, степень чистоты которых должна быть очень высока. В этом отношении не будет преувеличением отнести РЗЭ к материалам XXI века.
Перспективным способом получения чистых РЗМ и их сплавов с другими металлами является электролиз расплавленных солей РЗЭ, а также их смесей. Для эффективного использования электролитического метода получения РЗМ необходимо располагать надежной информацией об электрохимическом поведении комплексов, образуемых ионами РЗЭ в расплавах, а также химических реакциях, сопровождающих процессы электроосаждения. Поэтому является необходимым выяснение механизма электровосстановления комплексных ионов РЗЭ, в частности совместного электровосстановления гадолиния и криолита в галогенидных расплавах.
Глава I.
Строение и электрохимическое поведение расплавленных галогенидных систем, содержащих гадолиний и алюминий.
1.1.1. Строение индивидуального расплава трихлорида
гадолиния.
Кристаллические хлориды элементов от лантана до европия, включая гадолиний, имеют гексагональную решетку, а от диспрозия до лютеция (также и хлорид иттрия),- моноклинную. Температура плавления хлоридов РЗЭ постепенно снижается от лантана до диспрозия, а затем снова возрастает до лютеция; летучесть хлоридов увеличивается с возрастанием порядкового номера элемента, т.е. с увеличением ионного радиуса.
Безводные трихлориды очень гигроскопичны и расплываются на воздухе. Хорошо растворяются в воде и спирте. Поглощают NH3, выделяя теплоту и образуя аммиакаты LnCl3.n NH3. Заслуживает внимания тот факт, что монокристалл GdCl3 при низких температурах становится ферромагнетиком при 2,2˚К [2]. В данной работе отмечается, что в ряду лантаноидов трихлориды от La до Gd включительно изоструктурны (гексагональная типа UCl3). Здесь же отмечается, что GdCl3 – вещество с высокой температурой плавления (602˚С), в вакууме при высокой температуре летуче, что подтверждается данными по давлению паров [3].
Под строением ионного расплава понимают состав и взаимное расположение частиц, из которых он состоит. Первые выводы о строении ионных расплавов были сделаны на основании изучения их физико-химических свойств. Значительный прогресс в наших представлениях о строении ионных расплавов был достигнут в результате рентгеноструктурных и спектроскопических исследований. Вопреки прежним положениям, в соответствии с которыми жидкости вообще и ионные расплавы в частности считались отдаленными аналогами газов, а из рентгеновских исследований вытекает, что их нужно рассматривать как аналоги твердых кристаллических структур.
Однако если в структуре твердых кристаллов трихлорида гадолиния имеются как ближний, так и дальний порядок во взаимном расположении частиц, то в ионном расплаве сохраняется лишь ближний порядок. При плавлении кристаллов этого вещества дальний порядок разрушается. Рентгеновские исследования [4] несколько неожиданно показали уменьшение межионных расстояний в этом случае. Данный факт объясняется тем, что увеличение объема ионного вещества при его плавлении происходит не за счет возрастания параметров «кристаллической решетки», а «дефектов» в расплавленном ионном кристалле. Такое состояние ионного вещества называется квазикристаллическим. К тому же, по сравнению с твердым GdCl3, ионный расплав трихлорида гадолиния характеризуется большими свободными объемами. В работе [5] отмечается, что в расплавленном GdCl3 в качестве структурных единиц существуют также кластерные димеры и более полимеризованные комплексные анионы.
Итак, на основании рентгенографических исследований [6] структуры расплавленного GdCl3можно сделать следующие выводы:
1. расстояния между разноименными ионами меньше, а между одноименными больше в солевом расплаве, чем в кристаллическом трихлориде гадолиния;
2. координационное число в расплаве ниже, чем в твердом GdCl3;
3. в высокой степени сохраняется ближний порядок во взаимном расположении частиц.
На основании всего сказанного можно говорить о следующих составных слагающих ионного расплава трихлорида гадолиния: разноименно заряженные ионы (Gd3+, Cl-), недиссоциированные молекулы, ассоциаты (например Gd2Cl6), свободные объемы (дислокации, дырки).
1.1.2. Строение растворов расплава трихлорида гадолиния в
хлоридах щелочных металлов
Изучение взаимодействия хлоридов РЗМ с хлоридами щелочных металлов представляет большой интерес для характеристики расплава, кроме того, чистые хлориды РЗМ и их смеси с хлоридами щелочных металлов являются одними из исходных соединений для получения редкоземельных металлов высокой чистоты.
В расплавленном трихлориде гадолиния и его смесях с хлоридами щелочных металлов образуются прочные комплексные группировки с большим числом аддентов, что подтверждается различными методами исследований.
Например, для изучения комплексообразования РЗЭ в солевых хлоридных расплавах применены методы изоморфной сокристаллизации и ионного обмена [7]. В данной работе исследованы хлоридные расплавы, содержащие микроконцентрации РЗЭ.
Из диаграмм состояния бинарных систем типа MIIICl3 - MICl, где MIII – РЗЭ; MI – щелочной металл, следует, что все хлориды РЗЭ образуют конгруэнтные либо инконгруэнтные соединения с хлоридами K, Rb, Cs. Для хлорида натрия такие соединения образуют РЗЭ, начиная с самария.