Смекни!
smekni.com

Качественный анализ анионов (стр. 2 из 3)

5. Центрифужные пробирки (рис. 2).

Рис. 2.

6. Пробирки цилиндрические.

7. Капиллярные пипетки (рис. 3.).

Рис. 3.

8. Стеклянные палочки (рис. 4.).

Рис. 4.

9. Фарфоровые чашки диаметром 3—5 см.

10. Промывалка (рис. 5).

Рис. 5.

11. Предметные стекла.

12. Фарфоровая капельная пластинка (рис. 6).

Рис. 6.

13. Предметные стекла с углублениями (рис. 7).

Рис. 7.

14. Ершик для мытья посуды.

15. Водяная баня (рис. 8).

Рис. 8.

16. Центрифуга (рис. 9)

Рис. 9.

Частные реакции, а также операции разделения ио­нов проводят в конических пробирках для центрифуги­рования или в маленьких цилиндрических пробирках. В пробирку вносят несколько капель анализируемого раствора и, соблюдая необходимые условия, прибавля­ют по каплям реактив, помешивая реакционную смесь стеклянной палочкой.

Выполняя реакцию, необходимо следить за тем, чтобы кончик пипетки не касался стенок пробирки во избежание загрязнения реактива. Вынутую из капельницы пипетку по выполнении реакции необходимо сразу же опустить в ту же капельницу.

Вместо пробирок частные реакции можно выполнять также на фарфоровых капельных пластинках (рис. 6) или особых предметных стеклах с углублениями (рис. 7). В этом случае расход реактивов минималь­ный, а результат реакции хорошо заметен.

Для нагревания реакционной смеси пробирку погру­жают в кипящую водяную баню. Водяная баня может также служить для упаривания (выпаривания до небольшого объема) растворов. Выпаривание до­суха обычно проводят в фарфоровой чашке, нагревая ее на пламени газовой горелки. Пока жидкость не вы­парилась до конца, целесообразно ставить чашку на асбестированную сетку. Если остаток от выпаривания необходимо прокалить, чашку ставят на фарфоро­вый треугольник.

Для отделения осадка от раствора пробирку с осад­ком помещают в центрифугу.

Классификация анионов и групповые реагенты

К

ак известно из курса неорганической химии, к анионам отно­сятся отрицательно заряженные частицы, состоящие из отдельных" атомов или групп атомов различных элементов. Эти частицы могут нести один или несколько отрицательных зарядов. В отличие от катионов, которые в большинстве своем состоят из одного атома, анионы могут иметь сложный состав, состоящий из нескольких атомов.

Общепринятой классификации анионов не существует. Разными авторами предложены различные системы классификации их.

В настоящем руководстве принята наиболее часто применяемая классификация, по которой все анионы делятся на три аналитические группы в зависимости от растворимости их бариевых и серебряных селей.

В данном случае групповыми реагентами являются растворимые соли бария и серебра (табл. 1).

Таблица № 1

Классификация анионов

Группа

Анионы

Групповой реагент

Характеристика группы

1

SO4 2-, SO3 2- ,СO32-, РO43-,SiO3 2- Хлорид бария ВаСl2 в нейтральном или слабо­щелочном растворе Соли бария практически нерастворимы в воде

2

С1- , Вг- , I-, S2- Нитрат серебра AgNO3 и присутствии HNO3 Соли серебра практически нерастворимы в воде и разбавленной кис­лоте

3

NO3-, NO2-, CH3COO- Группового реагента нет Соли бария и серебра рас­творимы в воде

Общая характеристика анио­нов первой группы

К

первой аналитической группе анионов относятся сульфат-ион SO4 2-, сульфит-ионSO32-, корбонат-ион СO32-, фосфат-ион РO43-, силикат-ион SiO3 2-.

Эти анионы образуют с катионом Ва2+ соли, мало растворимые в воде, но, за исключением сульфата бария, хороню растворимые в разбавленных минеральных кислотах. Поэтому выделить анионы этой группы в виде осадка групповым реагентом—хлоридом бария BaCl2 можно только в нейтральной или слабощелочной среде.

Анионы первой группы образуют с катионами серебра Ag+ соли, растворимые в разбавленной азотной кислоте, а сульфат серебра Ag2S04 растворим даже в воде.

Обнаружение анионов первой группы

Вначале исследуют раствор на присутствие анионов первой группы действием группового реагента (хлорида бария BaCl2). Для чего в пробирку к 3—5 каплям нейтрального или слабощелоч­ного раствора прибавляют 5—7 капель 0,5 н. раствора хлорида бария. Образование осадка указывает на присутствие анионов пер­вой группы.

Обнаружение сульфат-ионов SO4 2-. К 4—5 каплям анализируе­мого paunopa прпбапьк- 6—8 капель 2 и раствора азотной кислоты и 3—4 капли 2 н . раствора хлорида бария BaCl2. Образование осад­ка говорит о присутствии сульфат-иона.

Обнаружение сульфит-иона SO32-. В склянку прибора прилейте 4—5 капель анализируемого раствора, добавьте 2.—3 капли раствора хлороводородной кислоты НС1. В ушко нихромовой про­волоки поместите каплю разбавленного раствора иода (подкрашен­ного крахмалом в синий цвет). Склянку закройте пробкой, имею­щей небольшую прорезь, и слегка нагрейте. При наличии сульфит-иона SO32 синяя капля через некоторое время обесцвечивается.

Обнаружение карбонат-иона СO32-. Если в анализируемом рас­творе обнаружен сульфит-ион SO32, то его необходимо окислить в сульфат-ион SO4 2, прибавив к раствору 4—5 капель пероксида водорода (8—10%) и осторожно нагрев на водяной бане. После этого приступайте к обнаружению карбонат-иона, дчя чего в пробир­ку прибавьте 6—8 капель 2 н . раствора хлороводородной кислоты НС1 и выделяющийся газ СО2, пропустите через известковую воду. Помутнение последней в пипетке прибора укажет на присутствие карбонат-иона СO32-.

Обнаружение силикат-иона SiO32-. Возьмите пробирку и налей­те 6—8 капель анализируемого раствора, бросьте в нее несколько кристалликов хлорида аммония NH4C1 и слегка нагрейте. Образо­вание белого студенистого осадка поликремниевых кислот говорит о наличии аниона SiO32-.

Обнаружение фосфат-иона РO43-. Поместите в пробирку 7—8 ка­пель раствора молибдата аммония (NH4)2Мо04 и 6—7 капель 6 н. раствора азотной кислоты НNO3.

К полученной смеси прилейте 5—6 капель анализируемого раствора и слегка нагрейте.

В при­сутствии фосфат-иона РO43 появляется желтый осадок молибдофосфата аммония.

Частные реакции анио­нов первой группы

В качестве примера рассмотрим реакции сульфат-аниона SO4 2-

1. Хлорид бария BaCI2обрадует с анионом SO4 2- белый осадок BaSO4:

ВаС2 + H2SO4® BaSO4¯ + 2НС1

Ва2+ + SO4 2-®BaSO4

2. Нитрат серебра AgNO3 при взаимодействии с анионом SO4 2- в концентрированных растворах образует белый осадок сульфата серебра Ag2S04, растворимый в азотной кислоте:

Na2SO4 + 2AgNО3® Ag2SO4¯ + 2NaNO3

SO4 2- + 2Ag+- ® Ag2SO4

Опыт.Налейте в две пробирки по 3—4 капли раствора сульфа­та натрия Na2SO4 и добавьте в первую 2—3 капли раствора хлорида бария, а во вторую — 3—4 капли раствора нитрата серебра. Обрати­те внимание на характер осадков и проверьте их растворимость.

Условия проведения опыта.

1. Реакцию образования BаSO4 можно проводить как в нейтраль­ных, так и в кислых средах (р11 < 7).

2. Осадок Ag2SO4 будет выпадать только из концентрированных растворов (растворимость Ag2SO4 = 2,6 . 10~2моль/л).

Общая характеристика анионов второй группы

К

о второй аналитической группе анионов относятся хлорид-ион С1-бромид-ион Вг-, иодид-ион I-, и сульфид-ион S2-.

Эти анионы образуют с катионом Ag+ соли, нерастворимые в воде и разбавленной азотной кислоте. Групповым реагентом на анионы второй группы является нитрат серебра AgN03 в присут­ствии азотной кислоты HNO3. Хлорид бария BaCl2 с анионами вто­рой группы осадков не образует.