iпред = + iпред,Сu2+ (42)
На рисунке 2 приведены логарифмические зависимости скорости электрохимической коррозии (iэх), предельного тока катодной поляризационной кривой а также общей скорости коррозии, пересчитанной на токовые единицы с помощью электрохимического эквивалента, равного для меди в хлоридных средах 2,3881 (iкор,общ) от концентрации СuС12. Из рисунка 2 видно, что общая скорость коррозии в 2,5-5 раз ниже iпред во всем интервале концентраций Cu2+,
Таблица 2.
№ п/п | Параметры | условно безводный спирт | смешанный растворитель | ||
концентрационный интервал CuC12 | концентрационный интервал CuC12 | ||||
1 | (¶lgiэх /¶lgCCu2+) | 0,12 | 10-4 –10-1 | 0 | 10-4 -10-2 |
0,80 | 10-2 - 10-1 | ||||
2 | (¶lgiкор,общ /¶lgCCu2+) | 0,12 | 10-4 –10-1 | 0 | 10-4 -10-2 |
0,90 | 10-2 - 10-1 | ||||
3 | (¶lgiпред /¶lgCCu2+) | 0,20 | 10-4 –10-1 | 0 | 10-4 -10-2 |
1,20 | 10-2 - 10-1 | ||||
4 | (¶lg(iкор,общ-i0)/¶lgCCu2+) | 0,50 | 10-4 –10-1 | 0 | 10-4 -10-2 |
2,10 | 10-2 - 10-1 | ||||
5 | (¶lgia/¶lgCCu2+) | -0,46 | 10-4 –10-1 | -1,4 | 10-4 -10-2 |
а, следовательно, коррозия протекает не на предельном токе и не связана с транспортными ограничениями окислителя-деполяризатора к поверхности электрода.
Порядок общей скорости коррозии по СuС12, представляющий собой тангенс угла наклона соответствующей прямой равен 0,12; iэх и iпред также возрастают с порядками 0,12 и 0,20 соответственно (таб. 2). Поскольку коррозия меди в солянокислых изопропанольных растворах НС1 с добавками Cu2+, с одной стороны, вызвана, кислотностью среды, а с другой - влиянием CuC12, то общая скорость коррозии, очевидно, будет представлять собой сумму:
iкор,общ= i0 + iCu2+, (43)
где i0 - скорость коррозии меди, обусловленная кислотностью среды, а iCu2+ - влиянием ионов Cu2+ на растворение меди в изопропанольных средах.
В свою очередь, iCu2+ складывается из плотности тока электрохимической коррозии (iэх,Cu2+) и плотности тока неэлектрохимической составляющей (iх):
iCu2+ = iэх,Cu2+ + iх. (44)
Порядок скорости коррозии меди, обусловленной введением ионов CuC12 в раствор (¶lg(iкор,общ - i0)/¶lgCCu2+) заметно повышается и составляет 0,5 (таб. 2, рис. 2).
Оценим влияние ионов Cu2+ на анодную реакцию ионизации металла. Добавки хлорной меди в 5М у.б. изопропанольный раствор НС1 повышает ионную силу раствора (J).
J = 1/2 , (45)
где Сi - концентрация иона; Zi-заряд иона.
Вели чина J в нашем случае представляет собой сумму:
J = 1/2 (CH+ + CC1- + 4CCu2+), (46)
где CH+ = CHC1; СCu2+ = ; СC1- = CHC1 + 2
Рис.3.а) Анодные поляризационные кривые на меди в растворах состава 5М НС1 + х М СuС12 в у.б изопропиловом спирте. Неподвижный электрод. Комнатная температура. Воздух.
х: 1-10-4; 2-10-3; 3-5.10-2; 4-10-1.
б) Нахождение порядка реакции анодной ионизации по данным рис. 3а.
Подставляя концентрации ионов в уравнение (46) получим:
J = CHC1 + 3 . (47)
Так как ионная сила раствора одно-одновалентных электролитов равна концентрации растворенного вещества, то изменение ее за счет введения соли будет составлять величину DJ:
DJ = J-J0, (48)
гдеJ0 - ионная сила фонового раствора.
Поскольку концентрация фонового электролита достаточно высока (5 моль/л НС1), то введение соли в концентрации 10-4 -10-1 моль/л весьма незначительно повышает величину J, а , следовательно этим изменением можно пренебречь (таб. 3). Последнее допущение дает возможность считать постоянными коэфициенты активности, а, следовательно, и активности ионов электролитов согласно первому приближению Дебая-Гюккеля:
lgf± = - A (49)
Таблица 3.
Влияние изученных концентраций CuС12 на ионную силу раствора
5М НС1 в изопропаноле.
Ошибка измерения ионной силы раствора | Концентрация CuC12, моль/л | |||||
10-4 | 10-3 | 10-2 | 5.10-2 | 10-1 | ||
АбсолютнаяDJ = J-J0, | 3.10-4 | 3.10-3 | 3.10-2 | 1,5.10-1 | 3.10-1 | |
Относительнаяl = , | 6.10-3 | 6.10-2 | 0,6 | 2,9 | 5,76 |
Изменение концентрации хлор-иона за счет добавок CuC12 в 3 раза меньше. Это означает, что на процесс анодной ионизации меди в исследуемых растворах влияют почти исключительно ионы Cu2+. Соответствующие полярзационные кривые в 5М у.б. изопопанольных растворах приведены на рис. 3а. Тафелевский наклон анодных поляризационных кривых составляет 50 мВ, что находится в соответствии с литературными данными [16] и говорит в пользу ненизменности механизма анодной ионизации в изопропанольных растворах НС1.
Экстраполируя начальные участки анодных кривых, соответствующие активному растворению металла на линию постоянного потенциала (0,04 В) находим значения логарифмов ia, которые наносим на график зависимости lgia от lgССu2+ (рис. 3б). Тангенс угла наклона полученной прямой, представляющий собой порядок реакции анодной ионизации меди по Cu2+, составляет -0,46. Отрицательная величина (¶lgiа /¶lgCCu2+) указывает на ингибирующее действие ионов Cu2+ в анодной реакции ионозации меди. Таким образом, положительная величина порядка электрохимической скорости коррозии по CuС12 обусловлена, прежде всего, участием ионов Cu2+ в катодной реакции (12).
Влияние воды в растворителе в количестве 10 мас.% на скорость коррозии, определенную по потерям массы образцов, неоднозначно. В случае небольших добавок CuC12 (10-4 - 10-2) вода оказывает слабый ингибирующий эффект, а для более концентрированых растворах по CuC12 - стимулирует коррозию (рис.4).
В 5М изопропанольных растворах НС1 с 10 мас.% Н2О в растворителе и добавками CuC12наблюдаются, в основном, те же закономерности, что и в у.б. растворах: коррозия меди протекает не на предельном токе (iкор,об <iпред), а скорость электрохимического растворения ниже общих коррозионных потерь приблизительно в 2 раза во всех исследуемых растворах (таб. 4).
Таблица 4.
Влияние добавки CuС12 на общие коррозионные потери,
скорость электрохимической коррозии и предельный ток катодных
поляризационных кривых в 5М изопропанольных растворах НС1 на основе смешанного растворителя (10 мас% Н2О).
(Воздух. Продолжительность коррозионных испытаний -2 часа.
Неподвижный электрод.)
Параметр, | Концентрация CuC12, моль/л | |||||
А/см2 | 0 | 10-4 | 10-3 | 10-2 | 5.10-2 | 10-1 |
iкор,общ | 6,28.10-5 | 7,53.10-5 | 7,95.10-5 | 7,95.10-5 | 3,72.10-4 | 1,09.10-3 |
iэх | 3,63.10-5 | 3,80.10-5 | 3,80.10-5 | 3,80.10-5 | 1,58.10-5 | 2,29.10-5 |
iпред | 1,82.10-4 | 1,99.10-4 | 1,99.10-4 | 1,99.10-4 | 1,99.10-3 | 3,98.10-3 |
Следует отметить, что ток коррозии, скорость электрохимической коррозии и предельный ток катодных поляризационных кривых, значения которых найдены из поляризационых кривых рис.5, в средах с 10 мас.% Н2О также имеют концентрационую зависимость от ионов Cu2+. Порядки указанных величин, определенные по логарифмическим зависимостям рис. 6 сведены в таблицу 2, из которой видно, что в интервале концентраций хлорида меди (II) 10-4-10-2 моль/л содержание последнего не оказывает практически никакого влияния ни на электрохимическую составляющую коррозии (порядки iэх и iпред по CuC12 равны нулю), ни на общие коррозионные потери. С увеличением концентрации добавки Cu2+ все три параметра - iэх, iкор,общ, иiпред - резко возрастают с порядком, близким к 1 (0,8; 0,9; 1,2 соответственно). Величина скорости коррозии iCu2+, рассчитанная по разности общей скорости коррозии (iкор,общ)и скорости растворения, обусловленного кислотностью среды (i0) имеют порядок по CuC12 в интервале концентраций последнего 10-2 - 10-1 моль/л 2,1.