Смекни!
smekni.com

Оксисоединения (стр. 6 из 11)

Некоторое количество глицерина образуется при брожении сахаров.

В настоящее время осуществлён промышленный синтез глицерина из пропилена, выделяемого из газов крекинга нефти. Этот синтез является доказательством строения глицерина как пропантриола.

Сначала путём хлорирования пропилена при высокой температуре (500°С) получают хлористый аллил, сохраняющий двойную связь (реакция Львова):

СН2=СН─СН3 + Сl2 → CH2=CH─CH2Cl + HCl

Затем присоединением хлора и воды хлористый аллил превращают в 1,3-дихлорпропанол-2

Cl OH Cl

│ │ │

CH2=CH─CH2Cl + Cl2 + H2O → CH2─CH─CH2 + HCl

гидролиз которого даёт глицерин:

Cl OH Cl ОН ОН ОН

│ │ │ │ │ │

CH2─CH─CH2 + 2Н2О → CH2─CH─CH2 + 2HСl

1,3-дихлорпропанол-2 пропантриол-1,2,3

(глицерин)

Глицерин даёт с кислотами три ряда сложных эфиров: моно-, ди- и триэфиры. Для первых и вторых возможны изомеры: продукты этерификации по первичным и вторичным группам. При действии HCl на глицерин получается смесь двух монохлоргидринов глицерина, содержащая больше α-монохлоргидрина СН2ОН─СНОН─СН2Cl и меньше β-изомера СH2OH─CHCl─CH2OH. При обработке щёлочью оба изомера дают один и тот же глицидный спирт

Н2С─СН─СН2ОН

\ /

О

При обработке глицерина хлористым водородом в более жёстких условиях образуются два дихлоргидрина

СН2Cl─СНОН─СН2Cl СH2OH─CHCl─CH2Cl

при обработке щёлочью дающие эпихлоргидрин глицерина

Н2С─СН─СН2Сl

\ /

О

Являясь одновременно первичным и вторичным спиртом, глицерин, нашедший многообразное применение в органическом синтезе, при окислении образует смесь соответствующего альдегида и кетона:

СН2ОН─СНОН─С=О

|

Н

СH2OH─CНОН─CH2OH Глицериновый альдегид

СH2OH─CО─CH2OH

диоксиацетон

Диоксиацетон может быть получен хлорированием ацетона в 1,3-дихлорацетон СH2Cl─CО─CH2Cl и гидролизом последнего. Эта реакция также подтверждает строение глицерина.

Четырёхатомные, пятиатомные и шестиатомные спирты (эритриты, пентиты и гекситы)

Эритрит (бутантетраол-1,2,3,4) встречается в свободном виде и в виде сложных эфиров в водорослях и некоторых плесенях. Синтетический четырёхатомный спирт эритрит был получен из бутадиена СH2=СH─CН=CH2 следующим путём:

O O

║ ║

CН=CH2+Br2 CH─CH2Br 2AgO CCH3 CH─CH2─OCCH3 +Br2

│ ║ ║

CН=CH2 CH─CH2Br CH─CH2─OCCH3

O

O O O O

║ ║ ║ ║

CHBr─CH2─OCCH3 2AgOCCH3 CH3CO─CH─CH2─OCCH3 +4H2O

│ │

CHBr─CH2─OCCH3 CH3CO─CH─CH2─OCCH3

║ ║ ║

O O O

2CH2─CH─CH─CH2

│ │ │ │

OH OH OH OH

Стереоизомерные эритриты – твёрдые, отлично растворимые в воде, сладкие на вкус вещества.

Пентаэритрит (тетраоксинеопентан) С(СН2ОН)4 в природе не встречается. Это твёрдое высокоплавкое (т. пл. 262°С) вещество. Получается синтетически взаимодействием формальдегида с водным раствором ацетальдегида в щелочной среде:

Ca(OH)2

СН3─С=О + 4НСН=О + Н2О C(CH2OH)4 + H─C─OH

│ ║

H пентаэритрит O

муравьиная кислота

Пентиты и гекситы

CH2─CH─CH─ СН─CH2 CH2─CH─CH─ СН─СН─CH2

│ │ │ │ │ │ │ │ │ │ │

OH OH OH OH ОН OH OH OH OH ОН ОН

пентит гексит

Твёрдые, растворимые в воде вещества, сладкие на вкус. Для каждого из спиртов известно много стереоизомеров. Некоторые пентиты и гекситы встречаются в природе, например пентит адонит (в Adonis vernalis), стереоизомерные гекситы – маннит, дульцит, сорбит, идит. Все они имеют нормальный углеродный скелет и могут быть получены восстановлением соответствующих сахаров, которые являются их моноальдегидами.

НЕПРЕДЕЛЬНЫЕ СПИРТЫ

Одноатомные ненасыщенные спирты.

Олефины не могут нести гидроксил при углероде во втором валентном состоянии.

\ \

Структуры С=С─ неустойчивы и изомеризуются в С─С─ (правило Эльтекова ―

/ │ /│ ║

ОН Н О

Эрленмейера). Лишь в некоторых случаях такая изомеризация в заметной степени обратима и мы имеем дело с таутомерным равновесием:

\ \

С=С─ Û С─С─

/ │ /│ ║

ОН Н О

Для структур, в которых не несущий гидроксила непредельный атом не связан с электронооттягивающими группами (─ С─, NO2 и др.), правило Эльтекова-Эрленмейера

О

Имеет полную силу. Поэтому виниловый спирт и его гомологи не существуют, а при попытках их получить – перегруппировываются в ацетальдегид (и соответственно его гомологи) или в кетоны:

СН2=СН → СН3─ С─Н

│ ║

ОН О

Причина перегруппировки – проявление того же (мезомерного) эффекта, что и в хлористом виниле, но в этом случае подходящего до конца – до полной передачи электронных пар – и являющегося таким образом +Т-эффектом:

Н Н Н

**_ │ │

СН2=С─ О─Н → СН2─С=О Н+ → СН3─ С=О

**

Эффект этот протонизирует водород гидроксила и создаёт у второго ненасыщенного атома углерода с его δ-зарядом удобное место атаки для иона водорода. В результате происходит изомеризация – переход протона к углероду.

Однако алкоголяты, а также простые и сложные эфиры винилового спирта не только существуют, но в последних двух случаях даже используются в промышленном масштабе в качестве мономеров. Разумеется, их приходится получать не прямым путём. При действии металлического лития или натрия в растворе в жидком аммиаке на ртутное производное ацетальдегида получаются алкоголяты винилового спирта (И.Ф. Луценко):

ClHgCH2─C=O + 2Me → CH2=C─OMe + MeCl + Hg, где Me = Li или Na.

│ │

H H

Простые и сложные виниловые эфиры получают присоединением к ацетилену спиртов (в присутствии КОН) и карбоновых кислот (в присутствии солей двухвалентной ртути, кадмия, цинка):

KOH

ROH + HC≡CHRO─CH=CH2

Me2+; 70°C

R─C─OH + HC≡CH R─C─O─CH=CH2

║ ║

O O

Из виниловых эфиров особенно важен винилацетат, полимеризующийся гомолитически в поливинилацетат. Последний используется для получения прозрачных пластмасс, в производстве триплекса (склеивание слоёв силикатного стекла) и для получения поливинилового спирта гидролизом поливинилацетата:nCH3COOCH=CH2