Смекни!
smekni.com

Производство метанола (стр. 3 из 5)

Отношение На:СО . ......... 2 4 8 10 14

Выход СНдОН, объемн. %,..... 17,25 13,80 8,39 7,05 5,40

Степень превращения, %

СО ............... 44,50 60,39 66,85 67,80 67,97

СОа .............. 19,50 45,71 70,52 76,15 82,39

\При увеличении содержания окиси углерода в газе, т. е. умень­шении отношения На: СО, равновесный выход метанола возрастает пропорционально при 50 кгс/см2 и 6 объемн. % СОз). Так, при 8 объемн. % СО, равновесный выход метанола составляет 5,71 объ­емн. %, при 16 объемн. % СО—11,41 объемн. %, а при 24 объ­емн, % СО—16,82 объемн. % СНзОН.

Двуокись углерода. Реакция восстановления двуокиси углерода водородом до окиси углерода в промышленных условиях синтеза метанола протекает практически до равновесного состояния, и пре­небрегать ею при расчете равновесных выходов метанола нельзя. 'При повышении содержания двуокиси углерода в газе равновесный выход метанола меняется незначительно. Степень превращения

окислов углерода в метанол при этом снижается с 42,2% при 6 обьемн.% СО2 до 32,7% при 12 объемн.% СО2.

Инертные компоненты. В промышленных условиях синтез ме­танола протекает в присутствии инертных к данному процессу га­зов (метан, азот). Они в реакции не участвуют и не оказывают прямого влияния на равновесие реакции образования метанола. Однако наличие их в газе снижает парциальное (эффективное) давление реагирующих веществ, что ведет к уменьшению равно­весного выхода метанола. Поэтому концентрацию инертных компо­нентов необходимо поддерживать на минимальном уровне.

На основании изложенного следует отметить, что синтез мета­нола на цинк-хромовом катализаторе, который работает при 360—380 °С, целесообразно проводить только при давлениях выше 200 кгс/см2. На низкотемпературных катализаторах, эксплуати­руемых в температурном интервале 220—280°С, возможна работа при давлениях ниже 100 кгс/см2, причем, чем ниже температура, тем ниже может быть и давления синтеза.

Кинетика синтеза метанола. В гомогенных условиях (без ка­тализатора) скорость взаимодействия окиси углерода и водорода ничтожно мала, и получить метанол в больших количествах невозможно. Для увеличения скорости реакции взаимодействия исходных компонентов используют вещества, которые, способствуя уско­рению процесса, сами к концу реакций остаются химически неизменными. Для оценки этого ускорения, или иначе активности катализатора, необходимо знать скорость химического взаимодействия реагирующих компонентов. Если реакция протекает в гомогенных условиях, то скорость ее зависит от температуры, дав­ления и концентрации реагирующих веществ. В гетерогенном, каталитическом процессе скорость реакции будет определяться также типом катализатора и состоянием его поверхности. Синтез метанола является гетерогенным каталитическим процессом, протекающим на границе раздела твердой (поверхность катализатора) и газообразной (смесь окиси углерода и водорода) фаз. До начала реакции окись углерода и водород концентрируются на поверхности катализатора (происходит адсорбция СО и Hz). Суммарный процесс синтеза метанола состоит из следующих стадий: диффузия исходных веществ к поверхности катализатора;

, /адсорбция этих веществ да поверхности катализатора; химическое ^взаимодействие адсорбированных молекул СО и Н2 до метанола;

/ удаление (десорбция) образовавшегося метанола с поверхности катализатора. Скорость процесса образования метанола будет равна скорости реакции в зависимости от начальных условии (темпера­туры, давления, концентрации веществ, времени контакта газа с катализатором) позволило вывести кинетическое уравнение. По­следнее используют при моделировании процесса и разработке промышленных реакторов.

В результате изучения скорости химического взаимодействия окиси углерода и водорода на медьсодержащем катализаторе СНМ-1 получено кинетическое уравнение:

„0,34

рсн^он

О) == k 1

где w— скорость реакции, кгс/(см2 • с); ^-—константа скорости прямой реакции; Кр—константа равновесия реакции синтеза мета­нола; рсо, /?На, JOcHgOH—парциальные давления СО, На и СНзОН, кгс/см2. ;

Проведенные на электронно-вычислительной машине расчеты по кинетическому уравнению по­казали, что оно хорошо описыва­ет процесс образования метанола.

На катализаторе СНМ-1 и может быть использовано для расчета промышленных реакторов, рабо­тающих при 50 Krc/CM'^.Qlo рас- «^ W считанным зависимостям можно определить оптимальные параметры процесса и равновесные условия. Наибольший выход метанола наблюдается при 255— 270° С, что согласуется с экспери­ментальными данными. С умень­шением парциального давления окиси углерода (повышение от­ношения Н2:СО) максимум активности катализатора смещается в сторону более низких температур.

Катализаторы синтеза метанола

При взаимодействии окиси углерода и водорода качественный состав продуктов реакции определяется видом используемого катализатора. Так, в зависимости от состава катализатора из окна углерода и водорода при соответствующих условиях (температура, давление и концентрация) можно получить метанол, высшие спирты, углеводороды, альдегиды и кислоты.

При синтезе метанола, кроме основных реакций, протекают следующие процессы:

СО + ЗНг ч—»- СН^ + НдО 2СО + 2Нз •<—>- СН< + СОа 2СО + 4На ^==fc (CHg)20 + НаО 4СО + 8Нг у—^ СДОН + ЗНзО

Метанол может также реагировать с окисью углерода и во­дородом, образуя ряд побочных веществ.

Основные требования, предъявляемые к катализатору синтеза метанола: высокая активность и селективность (направлять про­цесс в сторону преимущественного образования метанола), ста­бильность в работе, стойкость к колебаниям температуры и боль­шая механическая прочность. Катализаторы для синтеза метанола подразделяются на две группы: цинк-хромовые и медьсодержа­щие (цинк-медь-алюминиевые и цинк-медь-хромовые). На отечественных производствах метанола в основном используют активный / цинк-хромовый катализатор при 250—400 кгс/см2 и 380—400 °С. ' Цинк-хромовый катализатор состоит из окиси цинка и хромита цинка. Химический состав .его следующий: ZnO-ZnCrzO, 3ZnO-ZnCr204, 3,3ZnO-ZnCr20.

В настоящее время внедряется катализатор CMC-4 (Северодо­нецкий метанольный среднетемпературный). Этот катализатор бо­лее активен, чем обычный промышленный цинк-хромовый катали­затор; технико-экономические показатели работы на нем предпоч­тительнее: снижается • расход исходного газа, увеличивается степень превращения окиси и двуокиси углерода, на 5—10 °С снижается температура процесса синтеза.

В последнее время в связи с изменением сырьевой базы (пере­ход на природный газ), совершенствованием методов очистки газа и развитием техники в ряде стран используют цинк-медь-алюми­ниевые и цинк-медные катализаторы. Катализаторы, имеющие в своем составе медь, более активны, чем цинк-хромовые, причем максимальная активность их наблюдается при 220—260 °С. В силу этой особенности катализаторы на основе меди обычно называют низкотемпературными. Высокая активность их при низких темпе­ратурах позволяет проводить процесс при давлении ниже 200 кгс/см2, что значительно упрощает аппаратурное оформление. Разработан и освоен в промышленном масштабе катализатор СНМ-1 (Северодонецкий низкотемпературный метанольный). Хи­мический состав невосстановленного образца следующий: 52—54% CuO, 26—28% ZnO, 5—6% AlaOs, насыпная масса* 1,3—1,5 кг/м3, удельная поверхность 80—90 м^г, пористость ~50%.

Необходимо отметить, что медьсодержащие катализаторы по сравнению с цинк-хромовыми обладают малой термостойкостью и более чувствительны к каталитическим ядам. Медьсодержащий катализатор быстро снижает активность при перегревах, а в при­сутствии сернистых соединений обра­зуется неактивный сульфид меди.

Сырье, используемое для производства низкотемпературных катализаторов, должно содержать минимальное количество приме­сей, поскольку наличие последних снижает селективность контак­та и ухудшает качество метанола-сырца (особенно жесткие тре­бования предъявляют к содержанию мышьяка, серы и железа). Поэтому при использовании сырья, загрязненного различными при­месями, в том числе и сернистыми соединениями, медьсодержащие катализаторы практически не могут быть применены.

Производство катализаторов состоит из двух основных стадий:

приготовление катализатора и восстановление его до активного состояния. В промышленности цинк-хромовые катализаторы могут быть приготовлены «сухим» и «мокрым» методами.

При «сухом» методе приготовления предварительно измельчен­ные окись цинка и хромовый ангидрид, взятые в определенном соот­ношении, тщательно перемешивают на бегунах сначала в сухом виде, затем с увлажнением дистиллированной водой. В полученную смесь вводят до 1% мелкодисперсного графита и формуют таб­летки размером 5х5 или 9Х9 мм. По так называемому «мокрому» способу к суспензии окиси цинка добавляют раствор хромового ангидрида. Процесс проводят в специальных аппаратах-смесите­лях с последующим отделением воды. Полученную пасту последо­вательно сушат, смешивают с графитом и таблетируют. Приготов­ленный «мокрым» способом катализатор более однороден по хи­мическому составу, более пористый, а также имеет высокую механическую прочность. Активность катализатора, приготовлен­ного по «мокрому» способу, на 10—15% выше полученного «сухим» способом.

Цинк-хромовый катализатор получают также соосаждением из азотнокислых солей цинка и хрома. В растворе при взаимодейст­вии этих солей с карбонатом аммония в осадок выпадают основ­ные углекислые соли. При прокаливании осадка в атмосфере водорода получающиеся окислы цинка и хрома взаимодействуют с образованием хромита цинка. Полученную контактную массу после измельчения смешивают с графитом и таблетируют. Приготовленные катализаторы имеют высокоразвитую внутреннюю по­верхность (более 100 м2), меньшую на 30—36% насыпную массу и более высокую активность, чем катализаторы, полученные по «сухому» способу.