Смекни!
smekni.com

Электропроводность электролитов (стр. 2 из 6)

I = (u'+ + u'-)sαcмF u'+ = u+ (10)

Скорость движения ионов u'+ и u'- прямо пропорциональна напряженности поля E/l:

u'+ = u+ и u'- = u- (11)

где u+ и u- — абсолютные скорости ионов.

Абсолютной скоростью движения иона называется его скорость при единичном градиенте потенциала в 1 В м-1; ее размерность [ui] = В м2 с-1

Подставляя значения u'+ = u' - из уравнения (11) в (10), получаем

I = αF(u+ + u-) . (12)

С другой стороны, сопротивление R можно выразить через Λ. Учитывая, что из (11) ρ = 1/х и из (5) х = см Λ, получаем из (2) выражение R=l/(хs) = l/(cмΛs). Из закона Ома

I = = Λ . (13)

Приравнивая правые части уравнений (12) и (13) и решая равенство относительно Λ, получаем

Λ= αF(u+ + u-) (14)

Для сильных электролитов α=1 и

Λ= F(u+ + u-) (15)

Произведения

Fu++ и Fu-- (16)

Называются подвижностями ионов; их размерность [λи] = См м моль -1. Например, в водном растворе при 298 К подвижности катионов К +, Ag+ и Mg2+ равны 73,5 · 104; 61,9 · 104 и 53,0 · 104 См м2 · моль-1 и подвижности анионов С1-1, SO42- и СН3СОО- - 76,3 104; 80,0 · 104 и 40,9 · 104 См м2 моль-1 соответственно.

Вводя значения λ+ и λ- в (14) и (15), получаем для слабых электролитов:

Λ= α(λ+ + λ-) (17)

и для сильных электролитов

Λ= λ+ + λ- (18)

Для предельно разбавленного раствора α = 1, поэтому

Λ = λ + λ (19)

где λ и λ - подвижности ионов при предельном разведении. Уравнение (19), справедливое как для сильных, так и для слабых электролитов, называется законом Кольрауша, согласно которому молярная электрическая проводимость при предельном разведении равна сумме подвижностей ионов при предельном разведении. Из уравнения (19) и (16) получаем:

Λ = F(u + u) (20)

где F – постоянная Фарадея; u и u - абсолютные скорости движения ионов при предельном разведении.

1.2. Эквивалентная электропроводность

Эквивалентная электропроводность λсм2/(г-экв Ом) вычис­ляется из соотношения:

(21)

где с — эквивалентная концентрация, г-экв/л.

Эквивалентная электропроводность — это элек­тропроводность такого объема (φ см3) раствора, в котором содержится 1 г-экв растворенного вещества, при­чем электроды находятся на расстоянии 1 см друг от друга. Учитывая сказанное выше относительно удельной электропроводности, можно представить себе погруженные в раствор параллельные электроды на расстоянии 1 см., имеющие весьма большую площадь. Мы вырезаем мысленно на поверхности каждого электрода вдали от его краев площадь, равную φ-см2. Электропроводность раствора, заключенного между выделенными поверхностями таких электродов, имеющими площадь, равную φ- см2, и есть эквивалентная электропроводность раствора. Объем раствора между этими площадями электродов равен, очевидно, φ-см3 и содержит один грамм-эквивалент соли. Величина φ, равная 1000/с см3/г-экв, называется разведением. Между электродами, построен­ными указанным выше способом, при любой концентрации электро­лита находится 1 г-экв растворенного вещества и изменение экви­валентной электропроводности, которое обусловлено изменением концентрации, связано с изменением числа ионов, образуемых грамм-эквивалентом, т. е. с изменением степени диссоциации, и с изменением скорости движения ионов, вызываемым ионной атмо­сферой.

Мольная электропроводность электролита — это произведение эквивалентной электропроводности на число грамм-эквивалентов в 1 моль диссоциирующего вещества.

На рис. 1 показана зависимость эквивалентной электро­проводности некоторых электролитов от концентрации. Из рисунка видно, что с увеличением с ве­личина λ уменьшается сначала резко, а затем более плавно.

Интересен график зависимо­сти λ от (2). Как видно

из графика (Рис. 2), для сильных электролитов соблюдается медленное линейное уменьшение λ с увеличением , что соответ­ствует эмпирической формуле Кольрауша (1900);

λ= λ - А (22)

где λ - предельная эквивалентная электропроводность при бесконечном раз­ведении: с → 0; φ → ∞

Значение λ сильных электролитов растет с увеличением φ и ассимптотически приближается к λ. Для слабых электролитов (СН3СООН) значе­ние λ также растет с увеличением φ, но приближение к пределу и величину предела в большинстве случаев практически нельзя уста­новить. Все сказанное выше касалось электропроводности водных растворов. Для электролитов с другими растворителями рассмот­ренные закономерности сохраняются, но имеются и отступления от них, например на кривых λ-с часто наблюдается минимум (аномальная электропроводность).

2. Подвижность ионов

Свяжем электропроводность электролита со скоростью движе­ния его ионов в электрическом поле. Для вычисления электропро­водности достаточно подсчитать число ионов, проходящих через любое поперечное сечение электролитического сосуда в единицу времени при стандартных условиях, т. е. при напряженности поля, равной 1 в/см. Так как электричество переносится ионами различ­ных знаков, движущимися в противоположных направлениях, то общее количество электричества, проходящее через раствор в 1 сек, т. е. сила тока I, складывается из количеств электричества, перенесенных соответственно катионами I+ и анионами I-:

I = I++ I- (23)

Обозначим скорость движения катионов через и'см/сек), ско­рость движения анионов через v'см/сек), эквивалентную кон­центрацию ионов через сiг-экв/см3), поперечное сечение ци­линдрического сосуда через qсм ), расстояние между электро­дами через lсм) и разность потенциалов между электродами через ЕВ). Подсчитаем количество катионов, проходящих че­рез поперечное сечение электролита в 1 сек. За это время в одну сторону через сечение пройдут все катионы, находившиеся в на­чальный момент на расстоянии не более чем и' см от выбранного сечения, т. е. все катионы в объеме u'q. Количество катионов n+, прошедших через поперечное сечение в 1 сек:

n+ = u'qc+

Так как каждый грамм-эквивалент ионов несет согласно закону Фарадея F = 96485 K электричества, то сила тока (в а):

I+ = n+ F = u'qc+F

Для анионов, скорость движения которых равна v', рассуждая таким же образом, получим

I-= v' qc-F

Для суммарной силы тока (эквивалентные концентрации ионов одинаковы, т. е. c+ = c- = ci ):

I = I++ I-= (и' + v') qciF (24)

Скорости движения ионов и' и V' зависят от природы ионов, на­пряженности поля E/l, концентрации, температуры, вязкости среды и т. д.

Пусть все факторы, кроме напряженности поля, постоянны, а скорость движения ионов в жидкости постоянна во времени при постоянной приложенной силе, если среда, в которой они дви­жутся, обладает достаточной вязкостью. Следовательно, можно считать, что скорость ионов пропорциональна приложенной силе, т. е. напряженности поля:

и' = u ; v' = v (25)

где и и vкоэффициенты пропорциональности, которые равны скоростям ионов при напряженности поля, равной 1 в/см.

Величины и и v называются абсолютными подвижностями ионов. Они измеряются в см2/(сек·в).

Подставив выражение (25) в уравнение (24), полу­чим

I = (26)

По закону Ома

I = = EK (27)

Подставляем в уравнение (27) значения К и, приравняв правые части уравнении (26) и (27) будем иметь:

(28)

Решив уравнение (28) относительно λ, получим

(29)

Для сильных электролитов, диссоциацию которых считают полной, отношение 1000 сi/с = 1; для слабых электролитов 1000 сi/с = α. Введем новые обозначения:

U = uF; V=vF (30)

и назовем величины U и V подвижностями ионов. Тогда для сильных электролитов

λ = U + V (31)

а для слабых электролитов

λ = (U + V)α (32)

При бесконечном разведении (т. е. при φ → ∞, UU, VV и α → 1) получим

λ = U + V (33)

как для сильных, так и для слабых электролитов. Величины U и V, очевидно, являются предельными подвижностями ионов. Они равны эквивалентным электропроводностям катиона и ани­она в отдельности при бесконечном разведении и измеряются в тех же единицах, что λ или λ т. е. в см2/ (ом • г-экв). Уравнение (33) является выражением закона К.ольрауша: эквива­лентная электропроводность при бесконечном раз­ведении равна сумме предельных подвижностей ионов.