I = (u'+ + u'-)sαcмF u'+ = u+ (10)
Скорость движения ионов u'+ и u'- прямо пропорциональна напряженности поля E/l:
u'+ = u+ и u'- = u- (11)
где u+ и u- — абсолютные скорости ионов.
Абсолютной скоростью движения иона называется его скорость при единичном градиенте потенциала в 1 В м-1; ее размерность [ui] = В м2 с-1
Подставляя значения u'+ = u' - из уравнения (11) в (10), получаем
I = αF(u+ + u-) . (12)
С другой стороны, сопротивление R можно выразить через Λ. Учитывая, что из (11) ρ = 1/х и из (5) х = см Λ, получаем из (2) выражение R=l/(хs) = l/(cмΛs). Из закона Ома
I = = Λ . (13)
Приравнивая правые части уравнений (12) и (13) и решая равенство относительно Λ, получаем
Λ= αF(u+ + u-) (14)
Для сильных электролитов α=1 и
Λ= F(u+ + u-) (15)
Произведения
Fu+=λ+ и Fu-=λ- (16)
Называются подвижностями ионов; их размерность [λи] = См м моль -1. Например, в водном растворе при 298 К подвижности катионов К +, Ag+ и Mg2+ равны 73,5 · 104; 61,9 · 104 и 53,0 · 104 См м2 · моль-1 и подвижности анионов С1-1, SO42- и СН3СОО- - 76,3 104; 80,0 · 104 и 40,9 · 104 См м2 моль-1 соответственно.
Вводя значения λ+ и λ- в (14) и (15), получаем для слабых электролитов:
Λ= α(λ+ + λ-) (17)
и для сильных электролитов
Λ= λ+ + λ- (18)
Для предельно разбавленного раствора α = 1, поэтому
Λ∞ = λ + λ (19)
где λ и λ - подвижности ионов при предельном разведении. Уравнение (19), справедливое как для сильных, так и для слабых электролитов, называется законом Кольрауша, согласно которому молярная электрическая проводимость при предельном разведении равна сумме подвижностей ионов при предельном разведении. Из уравнения (19) и (16) получаем:
Λ∞ = F(u + u) (20)
где F – постоянная Фарадея; u и u - абсолютные скорости движения ионов при предельном разведении.
1.2. Эквивалентная электропроводность
Эквивалентная электропроводность λ [в см2/(г-экв Ом) вычисляется из соотношения:
(21)
где с — эквивалентная концентрация, г-экв/л.
Эквивалентная электропроводность — это электропроводность такого объема (φ см3) раствора, в котором содержится 1 г-экв растворенного вещества, причем электроды находятся на расстоянии 1 см друг от друга. Учитывая сказанное выше относительно удельной электропроводности, можно представить себе погруженные в раствор параллельные электроды на расстоянии 1 см., имеющие весьма большую площадь. Мы вырезаем мысленно на поверхности каждого электрода вдали от его краев площадь, равную φ-см2. Электропроводность раствора, заключенного между выделенными поверхностями таких электродов, имеющими площадь, равную φ- см2, и есть эквивалентная электропроводность раствора. Объем раствора между этими площадями электродов равен, очевидно, φ-см3 и содержит один грамм-эквивалент соли. Величина φ, равная 1000/с см3/г-экв, называется разведением. Между электродами, построенными указанным выше способом, при любой концентрации электролита находится 1 г-экв растворенного вещества и изменение эквивалентной электропроводности, которое обусловлено изменением концентрации, связано с изменением числа ионов, образуемых грамм-эквивалентом, т. е. с изменением степени диссоциации, и с изменением скорости движения ионов, вызываемым ионной атмосферой.Мольная электропроводность электролита — это произведение эквивалентной электропроводности на число грамм-эквивалентов в 1 моль диссоциирующего вещества.
На рис. 1 показана зависимость эквивалентной электропроводности некоторых электролитов от концентрации. Из рисунка видно, что с увеличением с величина λ уменьшается сначала резко, а затем более плавно.
Интересен график зависимости λ от (2). Как видно
из графика (Рис. 2), для сильных электролитов соблюдается медленное линейное уменьшение λ с увеличением , что соответствует эмпирической формуле Кольрауша (1900);λ= λ∞ - А (22)
где λ∞ - предельная эквивалентная электропроводность при бесконечном разведении: с → 0; φ → ∞
Значение λ сильных электролитов растет с увеличением φ и ассимптотически приближается к λ∞. Для слабых электролитов (СН3СООН) значение λ также растет с увеличением φ, но приближение к пределу и величину предела в большинстве случаев практически нельзя установить. Все сказанное выше касалось электропроводности водных растворов. Для электролитов с другими растворителями рассмотренные закономерности сохраняются, но имеются и отступления от них, например на кривых λ-с часто наблюдается минимум (аномальная электропроводность).
2. Подвижность ионов
Свяжем электропроводность электролита со скоростью движения его ионов в электрическом поле. Для вычисления электропроводности достаточно подсчитать число ионов, проходящих через любое поперечное сечение электролитического сосуда в единицу времени при стандартных условиях, т. е. при напряженности поля, равной 1 в/см. Так как электричество переносится ионами различных знаков, движущимися в противоположных направлениях, то общее количество электричества, проходящее через раствор в 1 сек, т. е. сила тока I, складывается из количеств электричества, перенесенных соответственно катионами I+ и анионами I-:
I = I++ I- (23)
Обозначим скорость движения катионов через и' (в см/сек), скорость движения анионов через v' (в см/сек), эквивалентную концентрацию ионов через сi (в г-экв/см3), поперечное сечение цилиндрического сосуда через q (в см ), расстояние между электродами через l (в см) и разность потенциалов между электродами через Е (в В). Подсчитаем количество катионов, проходящих через поперечное сечение электролита в 1 сек. За это время в одну сторону через сечение пройдут все катионы, находившиеся в начальный момент на расстоянии не более чем и' см от выбранного сечения, т. е. все катионы в объеме u'q. Количество катионов n+, прошедших через поперечное сечение в 1 сек:
n+ = u'qc+
Так как каждый грамм-эквивалент ионов несет согласно закону Фарадея F = 96485 K электричества, то сила тока (в а):
I+ = n+ F = u'qc+F
Для анионов, скорость движения которых равна v', рассуждая таким же образом, получим
I-= v' qc-F
Для суммарной силы тока (эквивалентные концентрации ионов одинаковы, т. е. c+ = c- = ci ):
I = I++ I-= (и' + v') qciF (24)
Скорости движения ионов и' и V' зависят от природы ионов, напряженности поля E/l, концентрации, температуры, вязкости среды и т. д.
Пусть все факторы, кроме напряженности поля, постоянны, а скорость движения ионов в жидкости постоянна во времени при постоянной приложенной силе, если среда, в которой они движутся, обладает достаточной вязкостью. Следовательно, можно считать, что скорость ионов пропорциональна приложенной силе, т. е. напряженности поля:
и' = u ; v' = v (25)
где и и v—коэффициенты пропорциональности, которые равны скоростям ионов при напряженности поля, равной 1 в/см.
Величины и и v называются абсолютными подвижностями ионов. Они измеряются в см2/(сек·в).
I = (26)
По закону Ома
I = = EK (27)
Подставляем в уравнение (27) значения К и, приравняв правые части уравнении (26) и (27) будем иметь:
(28)
Решив уравнение (28) относительно λ, получим
(29)
Для сильных электролитов, диссоциацию которых считают полной, отношение 1000 сi/с = 1; для слабых электролитов 1000 сi/с = α. Введем новые обозначения:
U = uF; V=vF (30)
и назовем величины U и V подвижностями ионов. Тогда для сильных электролитов
λ = U + V (31)
а для слабых электролитов
λ = (U + V)α (32)
При бесконечном разведении (т. е. при φ → ∞, U → U∞, V→ V∞ и α → 1) получим
λ∞ = U∞ + V∞ (33)
как для сильных, так и для слабых электролитов. Величины U∞ и V∞, очевидно, являются предельными подвижностями ионов. Они равны эквивалентным электропроводностям катиона и аниона в отдельности при бесконечном разведении и измеряются в тех же единицах, что λ или λ∞ т. е. в см2/ (ом • г-экв). Уравнение (33) является выражением закона К.ольрауша: эквивалентная электропроводность при бесконечном разведении равна сумме предельных подвижностей ионов.