Смекни!
smekni.com

Коррозия металлов (стр. 11 из 14)

Если в металле происходит развитие местного коррозионного разрушения в виде очень узких углублений, то вполне очевидно, что растягивающие напряжения, перпендикулярные к направлению этих углублений, будут способствовать возникновению концентра­ции напряжений на дне их, причем чем больше углубления и меньше радиус дна углублений, тем больше будет концентрация напряже­ний. При таком состоянии металла создаются все условия для раз­рушения его вдоль этих более или менее протяженных локальных коррозионных разрушений, и поэтому при достаточной концентра­ции напряжений металл может начать разрушаться за счет механи­ческого воздействия. В результате механического разрушения будет обнажаться свежая, незащищенная окисной пленкой поверхность металла, которая, будучи более анодной, подвергается интенсив­ному воздействию коррозионной среды, что приведет к увеличению тока между дном углублений и неповрежденной поверхностью ме­талла, а, следовательно, и к ускорению коррозии. Ускорение кор­розионного процесса вызовет дальнейшее механическое разруше­ние, и, как результат, увеличится скорость развития трещин бла­годаря совместному действию коррозионной среды и растягиваю­щих напряжений.

Эта общая картина процесса коррозионного растрескивания серьезно не изменилась при последующих исследованиях, и в на­стоящее время можно дать более детальную оценку механического действия концентратора напряжений и его роли в процессе раз­рушения.

Существует мнение, что главная функция напряжений состоит в нарушении поверхностных пленок без разрушения металла и что ускоренное развитие и распространение трещин в основном имеет электрохимическую природу. В пленочных теориях кор­розионного растрескивания отмечается, что вопрос о том, будет ли иметь место быстрое развитие трещины, зависит от соотношения скоростей образования пленки и увеличения концентрации напря­жений. Если образование пленки может остановить коррозию до того, как концентрация напряжений достигнет значительной вели­чины, то быстрое развитие трещин будет предотвращено, но если концентрация напряжений достигнет критического значения до об­разования пленки, то- произойдет разрушение.

Несмотря на то, что высокие напряжения и деформация могут разрушать поверхностную пленку и тем самым способствовать ло­кализованной ускоренной коррозии, нет достаточных доказательств, что они играют основную роль или что разрушение пленки является главным фактором, приводящим к развитию трещин. Однако воз­можно, что разрушение поверхностной пленки, если оно имеет ме­сто, может играть важную роль в процессе хрупкого разрушения.

Весьма маловероятно, что наблюдаемое в некоторых случаях очень быстрое развитие трещин и последующее разрушение металла может быть причиной протекания коррозионного процесса. Очень быстрое (почти моментальное) растрескивание может быть воспроизведено в лабораторных условиях при соответствующем вы­боре состава сплава, термообработки и коррозионной среды. На­блюдения за характером развития трещин показывают, что тре­щины развиваются преимущественно механическим путем. Ско­рость развития трещин, хрупкий характер разрушения и другие факторы указывают на основную роль напряжений в общем про­цессе взаимодействия механических и химических факторов, кроме тех случаев, когда происходит разрушение поверхностной пленки, обеспечивающей доступ коррозионной среды. Новые представления о механизме хрупкого разрушения пластичных металлов и исследо­вание влияния поверхностных пленок на ползучесть и пластическую деформацию указывают на основную роль напряжений в процессе развития трещин и хрупкого разрушения. Вполне вероятно, что. в результате совместного действия напряжений и коррозии происходит процесс пластической деформации, что приводит к хрупкому разрушению металла.

Основные характерные черты такого представления о механизме коррозионного растрескивания содержатся в теориях Дикса и соав­торов, а также в работах Киттинга. Впоследствии Джильберт и Хадден развили эти представления более по­дробно для сплавов Аl — 7% Мg, что дало возможность расширить представления о механизме коррозионного растрескивания, пригод­ного для всех систем сплавов. Полагают, что такой механизм позво­ляет объяснять многие наблюдаемые явления, ранее трудно со-гласуемые.

Наиболее вероятными процессами, при которых происходит кор­розионное растрескивание, являются следующие:

1. Локализованная электрохимическая коррозия вызывает обра­зование небольших узких трещин в виде отдельных углублений, развивающиеся края которых имеют радиусы кривизны порядка атомных размеров. Трещины могут проходить по границам зерен, как, например, в алюминиевых сплавах или латуни, или через-зерна, как, например, в аустенитных нержавеющих сталях или в магниевых сплавах. Количество образующихся трещин может быть различным, но обычно одна трещина развивается в большей степени, чем другие.

2. По мере развития трещины у ее вершины создается концен­трация напряжений. Для пластичных сплавов эта концентрация напряжений не превышает максимальной величины, которая при­близительно в 3 раза больше предела текучести. При достаточно высоких напряжениях у вершины трещины происходит местная пластическая деформация, которая предшествует хрупкому разру­шению. В настоящее время установлено, что в пластичных метал­лах хрупкое разрушение не может иметь места без предшествую­щей пластической деформации. Действительно, именно деформация металла у развивающегося края трещины вызывает хрупкое разрушение за счет действующих у вершины трещины напряжений.

3. В зависимости от формы образца, способа приложения на­грузки, условий испытания и определенного энергетического состоя­ния металла, свойственного процессу развития хрупкого разруше­ния, трещина может распространиться через весь образец, вызвав-мгновенное разрушение его, или, распространившись на определен­ное расстояние, развитие ее может прекратиться. Развитие тре­щины может быть приостановлено при неблагоприятной для про­цесса растрескивания ориентации границ зерен, при неоднородно­сти кристаллической решетки или при наличии неметаллических включений; развитие ее может остановиться в результате релакса­ции напряжений при развитии трещины или при определенном энер­гетическом состоянии, когда производимая работа деформации бу­дет больше, чем увеличение поверхностной энергии, как отмечено у Ирвина и Орована.

4. Развитие трещины за счет механического разрушения обна­жает свежую поверхность металла, и коррозионная среда быстро засасывается в трещину под действием капиллярных сил, в результате чего наступает период интенсивной коррозии. Вполне возможно, что эта стадия интенсивной коррозии способствует развитию; трещины, причем коррозия развивается таким образом, что вызывает разветвление трещины. Однако следует считать, что главным фактором в развитии трещины является механическое воздействие а не электрохимические процессы.

5. Ускоренный процесс коррозии, вызванный действием коррози­онной среды на не защищенную пленкой поверхность металла, бы­стро замедляется вследствие поляризации и повторного образова­ния защитной пленки, что связано с изменением концентрации: электролита внутри трещины.

6. После этого опять преобладают условия, медленно развивающаяся локализованная коррозия продолжается до тех пор, пока не возникнет достаточно высокая концентрация, напряжений, которая вызовет деформацию и развитие трещины. Полный цикл процессов повторяется до тех пор, пока не наступит разрушение вследствие развития трещины или уменьшения попе­речного сечения напряженного образца.

Вопрос о том, разрушается ли образец сразу после того как об­разовалась первая трещина или в результате развития нескольких трещин в течение какого-то периода времени, не является сущест­венным в механизме растрескивания и зависит от формы, размеров и толщины образца, а также от величины напряжений и условий испытания.

Таким образом, представленный выше механизм включает две основные стадии процесса коррозионного растрескивания: период; локализованной электрохимической коррозии и последующий пе­риод развития трещин. Если разрушение не происходит очень быcтро, процесс растрескивания включает непродолжительный период интенсивной коррозии. Ниже подробно рассматривается каж­дая из стадий процесса растрескивания, а также факторы, опреде­ляющие эти стадии, и экспериментальные данные, подтверждаю­щие изложенные ранее гипотезы.

8 Начальная стадия локализованной коррозии

Состояние поверхности металла, обеспечивающее развитие ин­тенсивной локализованной коррозии, вероятно, подобно тому со­стоянию, при котором происходит питтинговая коррозия. Локаль­ное коррозионное разрушение происходит обычно при наличии ка­тодных и анодных микроэлементов, которые способствуют концен­трации и ускорению электрохимического процесса. Источниками местных анодных участков могут быть: 1) состав и микроструктурные неоднородности сплава, как, например, многофазные сплавы или включения по границам зерен; 2) значительное искажение гра­ниц зерен или других субструктурных границ, по которым могут выделяться растворенные атомы; 3) участки границ зерен, возник­шие благодаря местной концентрации напряжений; 4) локаль­ное разрушение поверхностной пленки под действием на­пряжений; 5) участки, возникшие за счет пластической де­формации.

9 Системы сплавов, подверженных межкристаллитному растрескиванию

Алюминиево-медные сплавы. Браун и соавторы показали, что, в результате выделения по границам зерен CuAl2 примыкающие к границам зерен зоны обедняются медью, в результате чего в растворе хлористого натрия между границами зерен и зернами существует разность потенциалов в 200 мв. Эти обедненные медью зоны, анодны по отношению к выделившейся фазе CuAl2 и по отношению к самим зернам.