Смекни!
smekni.com

Адсорбция и адсобционные равновесия (стр. 2 из 3)

Из кривой (рис. 2.3.2.3, а) видно, что общий объем малых пор относительно небольшой. Однако доля поверхности, приходящаяся на эти поры, существенно велика. С увеличением размера пор объем увеличивается быстрее, чем поверхность. Построение разных кривых распределения позволяет более правильно представить структуру пористого тела.

Размеры микропор соизмеримы с размерами адсорбированных молекул. В отличие от Ленгмюровского микрослоя в микропорах молекулы расположены в основном вдоль поры и взаимодействуют друг с другом подобно взаимодействию с полимолекулярными слоями преобразования. Но в отличие от последнего большинство молекул находится в непосредственном контакте со стенками пор. Поэтому ни теория БЭТ, ни теория Ленгмюра для процесса адсорбции микропористыми телами неприемлемы. Закономерности заполнения микропор также нельзя описать теорией капиллярной конденсации. Это объясняется перекрыванием полей поверхностных сил в противоположных стенках, что значительно увеличивает энергию адсорбции. Гистерезис в микропорах обычно не наблюдается. Особенность адсорбции на микропористых телах проявляется в их избирательном действии. Это происходит благодаря тому, что большинство адсорбированных молекул взаимодействует непосредственно с поверхностью. Кроме этого у микропор наблюдается так называемый ситовый эффект. Суть его в том, что адсорбируются только те молекулы, размер которых меньше или равен радиусу пор. Поэтому микропористые адсорбенты часто называют молекулярными ситами. В основе количественных соотношений теории объемного заполнения пор лежит теория Поляни. Утверждается следующее.

1. В адсорбционном пространстве действуют только дисперсионные силы, которые аддитивны и не зависят от температуры. Т.е. при адсорбции характер взаимодействия между молекулами адсорбата не изменяется, а происходит только увеличение концентрации на поверхности адсорбента.

2. Активных центров нет, а есть непрерывное силовое поле.

3. Адсорбционные силы действуют на расстоянии большем, чем монослой адсорбата, поэтому говорят об абсорбционном объеме, который заполняется жидким адсорбатом.

4. Действие адсорбционных сил уменьшается по мере удаления от адсорбента и на каком-то расстоянии они равны нулю.

5. Притяжение данной молекулы поверхностного адсорбента не зависит от наличия в адсорбционнои пространстве других молекул, вследствие этого возможна полимолекулярная адсорбция.

6. Адсорбционные силы не зависят от температуры. И, следовательно, с изменением температуры адсорбционный объем не изменяется. Это не противоречит тому, что с увеличением температуры адсорбция уменьшается, а свидетельствует о том, что в результате нагревания и увеличения интенсивности теплового движения адсорбированных молекул увеличивается десорбция.

На рис. 2.3.2.4 показан разрез адсорбционного объема. Как во всяком поле, в них можно представить эквипотенциальные поверхности, т.е. поверхности, где адсорбционный потенциал постоянен - это пунктирные линии.

Под адсорбционным потенциалом e следует понимать работу, совершаемую против адсорбционных сил при перемещении одного моля газа с поверхности жидкого адсорбата (рs) в газовую фазу (р). В теории Поляни сделано допущение, что практически все адсорбированное вещество находится в жидком состоянии. Это позволяет заменить зависимость адсорбционного потенциала от расстояния (которое для пористого адсорбента определить невозможно) на функцию объемного жидкого адсорбента. Этот объем можно определить из экспериментально полученной изотермы адсорбции (рис. 2.3.2.5), дающей величину адсорбции:

V = AVm,

где V - адсорбционный объем, заполненный жидкостью;

А - величина адсорбции, моль;

Vm- мольный объем адсорбата.

,

т.е. адсорбционный потенциал при постоянном объеме не зависит от температуры. Это так называемая температурная инвариантность. Для двух разных температур можно записать:

V=A1VМ1=A2VМ2;

.

Эти соотношения показывают, что, зная изотерму при одной температуре, можно рассчитать изотерму при другой температуре. В дальнейшем теорию Поляни разработал М.М. Дубинин. Так, им обнаружено важное свойство, характерное для потенциальных кривых адсорбции: характеристические кривые для одного и того же адсорбента и разных адсорбатов при всех значениях объемов адсорбата в поверхностном слое находятся в постоянном соотношении b, т.е.

(e/e0)V = b- коэффициент аффинности, где e0 – адсорбционный потенциал для адсорбата, выбранного за стандарт.

Используя теорию Поляни и обобщив экспериментальный материал, Дубинин пришел к выводу о возможности применения функции распределения ВейбуллаQ =f (V) в качестве функции распределения адсорбционного объема по значению потенциала для описания адсорбции на микропористых адсорбентах. Применительно к распределению степени заполнения по адсорбционному потенциалу функцию распределения Вейбулла представляют соотношением

q = f(C).

Это выражается следующим образом:

,

где E, n- параметры, не зависящие от температуры;

e - адсорбционный потенциал;

Е – характеристическая энергия адсорбции.

Отношение характеристических энергий для двух адсорбатов также равно

. Показатель степени n выражается целыми числами от 1 до 6 в зависимости от структуры адсорбента. Степень заполнения адсорбента можно представить как отношение А/А0 (величины адсорбции к максимальной адсорбции) или как отношение заполненного объема V к предельному объему адсорбционного пространства V0, тогда

V=V0exp[-(e/E)n] A=A0exp[-(e/E)n]
- общие уравнения теории объемного заполнения микропор.

В логарифмическом виде они имеют линейную форму:

.

Адсорбционные равновесия

Адсорбционное равновесие в системе "газ – жидкость". Закон Генри. Мономолекулярная адсорбция в системах "газ – жидкость", "жидкость – жидкость", "газ – твердое". Изотерма адсорбции Ленгмюра. Уравнение Фрейндлиха. Теория полимолекулярной адсорбции БЭТ. Уравнение БЭТ

Предположим, что имеются компоненты-неэлектролиты. Будем считать, что адсорбат образует на поверхности адсорбента мономолекулярный слой. Мономолекулярная адсорбция с точки зрения термодинамики процесса выражается химическим потенциалом в адсорбционном слое и объемной фазе:

;

;

,

где

- химический потенциал вещества в адсорбционном слое;

- химический потенциал вещества в объемной фазе.

При равновесии потенциалы равны:

.

Преобразуем:

;
– адсорбция; аi= c.

,

, где D - коэффициент распределения.

Выражение

- константа Генри. Она не зависит от концентрации, определяется при постоянной температуре, A/a=Kг,

А=а×Кг– закон Генри, т.е. при разбавлении системы коэффициент распределения стремится к постоянному значению, равному константе Генри. Если концентрация в сорбционном слое стремится к нулю, то а » с; а = ×с; - 1. Поэтому на практике закон Генри используют в следующем виде: а=Кгсi. Если одна из фаз – газ, то имеем следующий вид: a = КгРi,

Кг = Кг/RT.

Эти уравнения представляют собой уравнения изотермы адсорбции при малых концентрациях. В соответствии с этими уравнениями можно по другому сформулировать закон Генри: величина адсорбции при малых давлениях газа (малых концентрациях вещества в растворе) прямо пропорциональна давлению (концентрации).Эти зависимости показаны на рисунке 2.3.1.1. При адсорбции на твердых телах область действия закона мала из-за неоднородности поверхности, но даже на однородной поверхности при увеличении концентрации обнаруживается отклонение от закона. При малых концентрациях распределенного вещества отклонения обусловлены в основном соотношением между взаимодействием молекул друг с другом и с поверхностью адсорбента. Если когезионные взаимодействия адсорбата больше, то отклонение от закона отрицательно и <1, и коэффициент распределения увеличивается (кривая 1 на рис. 2.3.1.1). Если сильнее взаимодействие "адсорбат – адсорбент", то отклонение положительно и D уменьшается (кривая 2 на рис. 2.3.1.1). При дальнейшем увеличении концентрации происходит уменьшение свободной поверхности, снижается реакционная способность и кривые загибаются к оси абсцисс. Константу Генри получают экстраполяцией коэффициента распределения на нулевую концентрацию. В соответствии с правилом фаз Гиббса в гетерогенных системах равновесные параметры зависят от дисперсности или удельной поверхности. Для адсорбционных систем эта зависимость выражается в уменьшенных концентрациях вещества в объемной фазе с увеличением удельной поверхности адсорбента. Если в такой системе содержание распределяемого вещества постоянно, то