Смекни!
smekni.com

Адсорбция и адсобционные равновесия (стр. 3 из 3)

АmSуд + сV = const,

где m- масса адсорбента;

Sуд- удельная поверхность адсорбента;

V- объем фазы, из которой извлекается вещество;

const – постоянное количество вещества в системе.

,

или
: разделим второй член на с;

D - коэффициент распределения;

;
.

Из соотношения следует, что с увеличением удельной поверхности при постоянной концентрации адсорбата концентрация уменьшается и тем сильнее, чем больше константа Генри и меньше объем фазы.

Теория Ленгмюра позволяет учесть наиболее сильные отклонения от закона Генри, что связано с ограничением адсорбционного объема или поверхности адсорбента. Ограниченность этого параметра приводит к адсорбционному насыщению поверхности адсорбента по мере увеличения концентрации распределяемого вещества. Это положение уточняется следующими утверждениями.

1. Адсорбция локализована на отдельных адсорбционных центрах, каждый из которых взаимодействует только с одной молекулой адсорбента - образуется мономолекулярный слой.

2. Адсорбционные центры энергетически эквивалентны - поверхность адсорбента эквипотенциальна.

3. Адсорбированные молекулы не взаимодействуют друг с другом.

Ленгмюр предположил, что при адсорбции происходит квазихимическая реакция между распределяемым компонентом и адсорбционными центрами поверхности:

,

где А - адсорбционые центры поверхности;

В - распределенное вещество;

АВ - образующийся комплекс на поверхности.

Константа равновесия процесса:

,

где сав = А - величина адсорбции;

са = А0 = А¥ - А,

где А¥ - емкость адсорбционного монослоя или число адсорбционных центров, приходящихся на единицу поверхности или единицу массы адсорбента; А0 - число оставшихся свободных адсорбционных центров, приходящихся на единицу площади или единицу массы адсорбента; св – концентрация распределенного вещества.

Подставляя величину концентрации в уравнение константы, получим выражения

, св = с,

А = А¥Кс – АКс,

- для жидкостей;

- для газов.

Эти выражения – уравнения изотермы адсорбции Ленгмюра. К и Кр в уравнении характеризуют энергию взаимодействия адсорбента с адсорбатом. Адсорбционное уравнение часто представляют относительно степени заполнения поверхности, т.е. как отношение А/А¥:

,

.

Экспериментальные результаты по определению изотермы адсорбции обычно обрабатывают с помощью уравнения, записанного в линейной форме;

, т.е. уравнение типа y = b + ax.

Такая линейная зависимость позволяет графически определить А¥и К. Зная А¥, можно определить удельную поверхность адсорбента (поверхность единицы массы адсорбента):

,

где А¥ - предельная адсорбция, выражаемая числом молей адсорбата на единицу массы адсорбента;

NA – число Авогадро;

w0 – площадь, занимаемая одной молекулой адсорбата.

1. Если с- 0, тогда уравнение примет вид:

А=А¥Кс;

; А = Кгс, q =Кс,

т.е. при с- 0 уравнение Ленгмюра переходит в уравнение Генри.

2. Если с-¥, тогда А = А¥, А/А¥ = 1. Это случай предельной адсорбции.

3. Пусть адсорбция идет из смеси компонентов, в этом случае уравнение Ленгмюра записывается следующим образом:

.

Все рассмотренные выше уравнения справедливы для мономолекулярной адсорбции на адсорбенте с энергетически эквивалентными адсорбционными центрами. Однако реальные поверхности этим свойством не обладают. Приближенной к реальности является возможность распределения адсорбционных центров по энергии. Приняв линейное распределение, Темкин использовал формулу уравнения Ленгмюра и получил уравнение для средних степеней заполнения адсорбента.

,

где - константа, характеризующая линейное распределение;

К0 - константа уравнения Ленгмюра, отвечающая максимальной теплоте адсорбции.

Из уравнения следует, что увеличение парциального давления (из-за увеличения концентрации) одного компонента подавляет адсорбцию другого и тем сильнее, чем больше его адсорбционная константа равновесия. Уравнение часто называют логарифмической изотермой адсорбции. Если принять экспоненциальное распределение центров по поверхности, то в области средних заполнений получается ранее найденное эмпирическим путем уравнение Фрейндлиха:

.

Прологарифмировав, получим

,

где K, n – постоянные.

Использование уравнения Фрейндлиха в логарифмической форме позволяет определить константу уравнения.

Уравнение Ленгмюра можно использовать только при адсорбции в мономолекулярном слое. Это условие выполняется при хемосорбции, физической адсорбции газов при меньшем давлении и температуре выше критической.

Однако в большинстве случаев мономолекулярный адсорбционный слой не компенсирует полностью избыточную поверхностную энергию и поэтому остается возможность влияния поверхностных сил на второй и т.д. адсорбционные слои. Это реализуется в том случае, когда газы и пары адсорбируются при температуре ниже критической, т.е. образуются полимолекулярные слои на поверхности адсорбента, что можно представить как вынужденную конденсацию (рис. 2.3.1.2 и 2.3.1.3).

В результате этих представлений была выведена следующая формула:

- уравнение полимолекулярной адсорбции БЭТ,

где

;

KL= aжп– константа конденсации пара;

аж - активность вещества в жидкости;

ап - активность вещества в состоянии насыщенного пара;

ап = Рs.

Физический смысл С: характеризует разность энергии Гиббса в процессах чистой адсорбции и конденсации. Это уравнение получило название БЭТ (Бранауэр-Эммет- Теллер).

При р/рs<<1, уравнение БЭТ превращается в уравнение Легмюра, которое при дальнейшем уменьшении давления (Р- 0) переходит в закон Генри:

.

При обработке экспериментальных данных уравнение БЭТ используют в линейной форме (рис. 2.3.1.4):

;
,

таким образом графически находят обе константы уравнения А¥ и С.