Смекни!
smekni.com

Адсорбция и адсобционные равновесия (стр. 1 из 3)

Адсорбция на границе раздела "твердое тело- газ". Классификация пористых тел по Дубинину. Капиллярная конденсация. Уравнение Томсона (Кельвина). Капиллярно-конденсационный гистерезис. Теория объемного заполнения пор. Теория Поляни

Адсорбция - процесс самопроизвольного перераспределения компонентов системы между поверхностным слоем и объемом фазы.

Адсорбция может наблюдаться в многокомпонентных системах и при перераспределении в поверхностный слой уходит тот компонент, который сильнее понижает поверхностное натяжение. В однокомпонентной системе при формировании поверхностного слоя происходит изменение его структуры - уплотнение, которое называется автоадсорбцией.

В общем случае адсорбция может происходить не только благодаря стремлению поверхностной энергии к уменьшению, но и за счет химической реакции компонентов с поверхностью вещества. В этом случае поверхностная энергия может даже увеличиваться на фоне снижения энергии всей системы.

Вещество, на поверхности которого происходит адсорбция, называется адсорбентом, а вещество, которое перераспределяется – адсорбатом.

Обратный процесс перехода вещества с поверхности в объем фазы - десорбция.

В зависимости от агрегатного состояния фаз различают адсорбцию газа на твердых адсорбентах, твердое тело – жидкость, жидкость - жидкость, жидкость - газ. Для количественного описания адсорбции применяют две величины: первая измеряется числом молей или граммами, приходящимися на единицу поверхности или массы адсорбента:

А = m1/m2- абсолютная адсорбция, А = ni/S.

Величина, определяемая избытком вещества в поверхностном слое, также отнесенным к единице площади поверхности или массы адсорбента, называется Гиббсовской или относительной адсорбцией (Г).

Адсорбция зависит от концентрации компонентов и температуры.

А = f(c,T)- жидкость;

А = f(P,T)- газ

Различают следующие виды зависимостей:

1. Изотерма (рис. 8) 2. Изобара 3. Изостера
А=fT(c) А=fP(T) c=fA(T)
A=fT(P) A=fC(T) P=fA(T)

Поскольку в качестве твердых адсорбентов используют пористые тела, рассмотрим некоторые методы получения твердых тел. Основных методов два.

1. Первый метод заключается в синтезе гидрозоля, который затем подвергают коагуляции до получения геля. Гель высушивают, частицы в результате этих операций срастаются с образованием твердого каркаса. Так как частицы золя высокодисперсны, то пористый материал получается с большой удельной поверхностью. Для удобства использования комки дробят, таблетируют, гранулируют. Обычно размер зерен адсорбента имеет предел от 0.1 до 7 микрон. Таким образом получают силикагель и другие адсорбенты.

2. Второй метод заключается в обработке крупнопористых материалов агрессивными газами или жидкостями. При такой обработке образуется губчатая структура. Этим методом получают активированный уголь из природных материалов, из которых сначала удаляют летучие вещества при нагревании без доступа воздуха. В результате образуется крупнопористая структура. Затем активируют уголь путем окисления газом кислорода или СО2, или водяным паром. Таким же образом получают никель Рэнея, т.е. берут сплав никеля и алюминия и его высушивают.

По классификации М.М. Дубинина за основу принят размер пор и механизм протекающих на них процессов.

1. Макропористые тела. Радиус пор от 100 - 200 нм, Sуд = 0.5 - 2 м2/г - Для этих же адсорбентов пригодна теория адсорбции Ленгмюра. В адсорбентах и катализаторах макропоры выступают в качестве транспортных каналов и адсорбцией в них можно пренебречь.

2. Переходно-пористые тела. Радиус пор более 2 - 100 нм, Sуд = 100 - 500 м2/г. Для них характерна полимолекулярная адсорбция, которая с увеличением давления заканчивается капиллярной конденсацией.

3. Микропористые тела. Радиус пор 0.5 - 2 нм, Sуд= 500 - 1000 м2/г. Отличительной особенностью этих тел является чрезвычайно близкое расположение противоположных стенок в порах. При этом их поля поверхностных сил перекрываются и они действуют во всем объеме микропор. К ним применима теория объемного заполнения микропор.

Реальные и промышленные адсорбенты имеют набор всех пор, но соотношение пор с разными радиусами различно. Каких пор больше, к такому классу их и относят.

Как уже отмечалось, влияние структуры пористого тела на адсорбцию заметно проявляется уже на переходно-пористых телах. Это обусловлено проявлением капиллярных сил. Появление этого связано со сродством адсорбата к адсорбенту. Основываясь на закономерностях капиллярных явлений, можно утверждать, что сродство должно быть достаточно для смачивания поверхности твердого тела жидкостью, появляющейся в результате конденсации в порах. Только в случае смачивания адсорбент будет втягивать в поры адсорбат, увеличивая тем самым адсорбцию. Чем меньше размер пор, тем сильнее капиллярное удерживание адсорбата. Если поверхность не смачивается, то наблюдается явление капиллярного выталкивания, адсорбция в этом случае минимальна и возможна только в крупных порах. Адсорбция в переходно-пористых телах происходит по механизму капиллярной конденсации. Капиллярная конденсация начинает проявляться при определенной степени заполнения адсорбента или при определенном давлении пара, характерном для данной системы. К этому моменту поверхностная энергия адсорбции практически полностью скомпенсирована в результате полимолекулярной адсорбции, а макропоры заполнены адсорбатом. В результате повышения давления пара заполняются конденсатом все крупные поры. Размеры радиусов менисков подчиняются уравнению капиллярной конденсации Томсона (Кельвина).

,

где р - давление пара над искривленным мениском;

рs- давление насыщенного пара над плоской поверхностью;

s- поверхностное натяжение конденсированной жидкости;

r - радиус кривизны мениска.

Из уравнения видно, что при смачивании обеспечивается отрицательная кривизна мениска конденсата (вогнутый мениск), конденсация в порах наступает при давлении, которое меньше давления насыщенного пара, т.е. р/рs<1. Капиллярная конденсация не является следствием адсорбционных сил адсорбента и адсорбата в капилляре, но адсорбция является первым этапом капиллярной конденсации, если адсорбционные силы очень велики, а капилляры очень узкие, то конденсация идет до тех пор, пока не будет достигнуто давление насыщения над поверхностью.

Для адсорбентов переходной пористости характерна изотерма адсорбции с петлей капиллярно-конденсационного гистерезиса (рис. 2.3.2.1). При малых давлениях, когда конденсация не происходит, гистерезис не наблюдается. Начало его появления зависит от природы адсорбента и адсорбата.

Пористые структуры разнообразны, однако считается, что их можно смоделировать тремя видами:

1) конусообразные;

2) цилиндрические с одним открытым концом;

3) цилиндрические с двумя открытыми концами.

В реальных адсорбентах имеются все виды пор, которые заполняются при разных давлениях, поэтому реальные изотермы имеют вид, представленный на рис. 2.3.2.2:

В первой группе в конусообразных порах конденсация начинается со дна пор, где кривизна наибольшая. По мере заполнения поры радиус мениска увеличивается (уменьшается кривизна), поэтому для дальнейшего заполнения поры необходимо увеличить давление (рис. 2.3.2.2, а). Процесс десорбции идет в обратном направлении и описывается той же кривой.

Во второй группе конденсация также начинается со дна, где кривизна сферическая и поэтому наибольшая (см. рис. 2.3.2.2, б). Так как пора цилиндрическая, то она заполняется целиком при определенном радиусе мениска, что отвечает и определенному давлению пара. Капиллярная конденсация в этих порах также происходит обратимо. В третьей группе (в): конденсация начинается на стенках пор, имеющих кривизну, в 2 раза меньшую сферы того же радиуса. Поэтому заполнение происходит при больших давлениях пара. Конденсация на стенках приводит к уменьшению радиуса пор и ее мгновенному заполнению при давлении, отвечающем началу конденсации. На концах образуются сферические мениски жидкости. Десорбция может начаться при давлении, соответствующем радиусу кривизны этих менисков. Таким образом, опорожнение происходит при меньшем давлении, чем ее заполнение. Это и объясняет наличие гистерезиса на изотерме адсорбции. В некоторых случаях гистерезис вызывается кинетическими факторами (смачивание).

Капиллярная конденсация описывается уравнением Кельвина, в которое входит радиус кривизны мениска. Это позволяет рассчитывать функции распределения пор по размерам. В принципе количественная характеристика дисперсных систем по дисперсности может быть представлена распределением массы, объема, размером частиц по радиусу поверхности. Метод расчета функции распределения частиц (пор) по размерам заключается в построении интегральных и дифференциальных кривых распределения. Для простых тел наиболее типичными является распределение пор по радиусу. Поэтому интегральная кривая распределения выражает зависимость общего объема пор от их радиуса: Vn=f(r).