Смекни!
smekni.com

Активация алкенов и алкинов (стр. 2 из 2)

Смещение электронов и ослабление связи Х-Н при координации подтверждается данными ИК-спектров координированных молекул. Например, координация RNH2 в комплексах с PtCl2 приводит к понижению νN-H (на 80-100 см-1).

В результате повышается способность связи Н-Х к гетеролитической диссоциации с передачей протона на другой субстрат или его окислительному присоединению к переходному металлу (в зависимости от степени окисления металла и состояния его внутренней координационной сферы).

HX + MLn —→ H--X→MLn-1 + L

Даже такие слабые кислоты, как молекула аммиака или аминов, легко депротонируются в водных или неводных средах в координационной сфере переходных металлов:

TiCl4 + 6NH3 → TiCl(NH2)3 + 3 NH4Cl

Или

Pt(NH3)X5- + H2O → Pt(NH3)X52- + H3O+

В результате в комплексе металла появляется фрагмент молекулы HX (например, NH2), реакционная способность которого, конечно, ниже, чем свободного иона NH2-, но концентрация которого на много порядков выше, чем в отсутствие комплексообразователя.

Константа диссоциации ацетонитрила HCN, например, составляет 10-10. Образование комплексов с металлами позволяет существенно повысить концентрацию группы M-CN.

Так, при взаимодействии HCN с полиядерными комплексами меди(I)

CumCln(n-m)- + HCN→ ClnCum-1(CuCN) + HCl

концентрация CuCN в растворе может достигать 15% вес. Координированный анион CNможет далее участвовать в различных реакциях:

Для катализа особенно важны две последние реакции. Последняя реакция приводит к образованию изосинильной кислоты, способной внедряться по связи M-X.

Рекомендуемая литература

1. Г. Хенрици-Оливэ, С. Оливэ. Химия каталитического гидрирования СО. Москва, Мир, 1987 г.

2. Ф. Басоло, Р. Джонсон. Химия координационных соединений. Москва, Мир, 1966.

3. Под ред. Г. Цейсса. Химия металлоорганических соединений. Москва, Мир, 1964.

4. Э. Фишер, Г. Вернер. π-Комплексы металлов. Москва, Мир, 1968.