К литейным сплавам относятся также медистые сплавы АЛ-19 и ВАЛ10 содержащие 4-5% Cu и 9-11% Cu (таблица 3).
Эти сплавы в связи с более высокой температурой солидуса по сравнению с силуминами, являются более жаропрочными сплавами.
Литейными высокопрочными алюминиевыми сплавами являются сплавы системы Al-Mg (АЛ-23, АЛ-27). Эти сплавы содержат 6-13% Mg. Прочность этих сплавов в закаленном и состаренном состоянии может достигать значений 300-450 МПа при d = 10-25%. К преимуществам этих сплавов относятся: высокая коррозионная стойкость в атмосферных условиях и при действии морской воды.
Таблица 3 - Механические свойства некоторых литейных алюминиевых сплавов
Марка сплава | Способ литья | Вид термической обработки | sв, МПа | d, % | НВ, МПа |
не менее | |||||
АМ5 (АЛ19) | З, В, КЗ, В, КЗ | Т4Т5Т7 | 294333314 | 8,04,02,0 | 70,090,080,0 |
АМ4,5Кд (ВАЛ10) | З, ВКЗ, ВКЗ, ВКЗ | Т4Т4Т5Т5Т6Т6Т7 | 294314392431421490323 | 10,012,07,08,04,04,05,0 | 70,080,090,0100,0110,0120,090,0 |
АМг6л (АЛ23) | З, ВК, ДЗ, К, В | --Т4 | 186216225 | 4,06,06,0 | 60,060,060,0 |
АМг7 (АЛ29) | Д | - | 206 | 3,0 | 60,0 |
АМг10 (АЛ27) | З, К, Д | Т4 | 314 | 12,0 | 75,0 |
АК7Ц9 (АЛ11) | З, ВКДЗ, В, К | ---Т2 | 196206176216 | 2,01,01,02,0 | 80,080,060,080,0 |
АК9Ц6 (АК9Ц6р) | ЗК, Д | -- | 147167 | 0,80,8 | 70,080,0 |
АЦ4Мг (АЛ24) | З, ВЗ, В | -Т5 | 216265 | 2,02,0 | 60,070,0 |
Однако эти сплавы имеют следующие недостатки: повышенная склонность к окислению в жидком состоянии; повышенная чувствительность к примесям Fe, в результате образования нерастворимых соединений Al, Mg с Fe происходит значительное снижение пластичности; повышенная склонность сплавов к хрупкому разрушению при длительном действии внутренних или внешних напряжений на твердый раствор сплава; большая склонность к резкому снижению прочностных характеристик при совместном действии нагрузок и температуры; большая склонность к понижению механических свойств по мере увеличения сечения стенок деталей.
Деформируемые алюминиевые сплавы (ГОСТ 4784-74) подразделяются на термически не упрочняемые и термически упрочняемые.
В зависимости от назначения и требований в отношении механических, коррозионных, технологических, физических и других свойств деформируемые сплавы разделяют на сплавы высокой, средней и малой прочности, жаропрочные, криогенные, ковочные, заклепочные, свариваемые, со специальными физическими свойствами, декоративные.
Все применяемые в промышленности сплавы можно также разделить по системам, в которых основные легирующие элементы будут определять типичные для данной системы физические и химические свойства.
Среди термически упрочняемых деформируемых сплавов необходимо выделить следующие основные группы:
а) Двойные сплавы Al-Cu.
б) Дуралюмины (на основе Al-Cu-Mg-Mn).
в) Жаропрочные сплавы (на основе Al-Cu-Mg-Ni).
г) Высокопрочные сплавы (типа В95 на основе Al-Zn-Mg-Cu-Mn).
К термически не упрочняемым относятся сплавы Al-Mg (с небольшим соединением магнием (до 5-6%) (АМг-3, АМг6, АМг5В и т.д.) и марганца (АМц).
Эти сплавы с точки зрения металлографии не представляют большого интереса. Их структура после пластической деформации и последующего отжига при температуре » 320-370 °С для снятия напряжений имеют структуру однофазного (в некоторых случаях несколько пересыщенного) твердого раствора, не выделяющего вторичной фазы. Эти сплавы обладают высокой пластичностью, коррозионной стойкостью и пониженной прочностью. Используется для изготовления деталей глубокой вытяжкой.
В сплаве АМц основным легирующим элементом является марганец. Марганец имеет довольно высокую растворимость в алюминии при эвтектической температуре 658 °С (которая составляет 1,4%Mn), которая резко уменьшается в интервале 550-450 °С. Несмотря на переменную растворимость марганца в алюминии, сплавы термообработкой не упрочняются. Нагревом до 640-650 °С и быстрым охлаждением можно получить пересыщенный твердый раствор марганца в алюминии, который распадается при последующих нагревах. Однако даже начальные стадии распада твердого раствора не сопровождаются заметным повышением прочности. Марганец сильно повышает температуру рекристаллизации алюминия, поэтому сплавы отжигают при более высоких температурах, чем алюминий. Марганец имеет малую скорость диффузии в алюминии, что приводит к образованию аномально пересыщенных твердых растворов и сильно выраженной внутридендритной ликвации. Марганец, из-за малой скорости диффузии, приводит к получению крупного рекристаллизованного зерна, размер которого можно уменьшить дополнительным легированием титаном.
Сплавы системы Al-Mn не являются двойными, примеси железа и кремния, неизбежные в алюминии, делают его многокомпонентным. Эти примеси сильно уменьшают растворимость марганца в алюминии. Железо связывается с марганцем с образованием грубых первичных кристаллов тройной фазы Al6(MnFe), которые резко ухудшают литейные и механические свойства сплавов, затрудняют их обработку давлением. При наличии кремния в сплавах образуется тройная фаза Т(Al10Mn2Si), кристаллизующаяся в виде мелких кристаллов кубической формы. С увеличением содержания железа и кремния повышается пластичность (таблица 4), и уменьшается размер зерна.
Таблица 4 - Типичные механические свойства термически неупрочняемых сплавов
Марка сплава | Состояние | σВ, МПа | σ0,2, МПа | δ,% | HB, МПа |
АМц | отожженное | 130 | 50 | 23 | 300 |
полунагартованное | 160 | 130 | 10 | 400 | |
АМг2М | отжиг | 200 | 100 | 23 | 450 |
АМг2П | неполный отжиг | 250 | 200 | 10 | 600 |
АМг6М | отжиг | 340 | 170 | 20 | 700 |
АМг6Н | нагартованное | 390 | 300 | 10 | - |
Полуфабрикаты из сплавов системы Al-Mg (АМг1, АМг2, АМг3, АМг4, АМг5, АМг6) имеют относительно небольшие прочностные характеристики, но высокую пластичность, а также отличаются высокой коррозионной стойкостью и хорошей свариваемостью аргонодуговым способом.
Основные компоненты сплавов этой системы – магний и марганец. В виде небольших добавок используют титан, цирконий, хром, кремний, бериллий. Растворимость магния в алюминии довольно высока и составляет 17,4%Mg при 450°С и около 1,4%Mg при комнатной температуре. Увеличение содержания магния приводит к повышению предела прочности и текучести. Относительное удлинение снижается с увеличением содержания магния до 4%, а затем медленно повышается. Присутствие магния до 4,5% сохраняет высокую коррозионную стойкость сплавов после любых нагревов.
Присадки марганца и хрома повышают прочностные характеристики основного материала и сварных соединений, а также увеличивается сопротивляемость материала к образованию горячих трещин при сварке и коррозионному разрушению под напряжением. Титан и цирконий измельчают литую структуру сплава, способствуя образованию более плотного сварного шва. Бериллий предохраняет сплавы от окисления их в процессе плавки, литья, сварки, а также при технологических нагревах под прокатку, штамповку, прессование и др. Кремний в количествах от 0,2 до 2% снижает механические свойства, в особенности относительное удлинение, а также уменьшает коррозионную стойкость сплава. Кремний снижает пластичность при прокатке. Примеси железа и кремния отрицательно действуют на свойства сплавов, поэтому желательно, чтобы их содержание не превышало 0,5-0,6%.
Двойные сплавы Al-Cu в практике не нашли широкого применения по причине сравнительно низкой прочности. Однако рассмотрение этих сплавов является необходимым, поскольку на них впервые были обнаружены эффекты упрочнения при старении после закалки. Теоретические основы этих процессов рассмотрено нами выше (лекция 5).
После отжига структура большинства промышленных сплавов представляет собой сравнительно равноосные зерна a-твердого раствора с выделением избыточных фаз по границам зерен. Природа этих избыточных фаз зависит от химического состава сплавов. В двойных Al-Cu – сплавах избыточной фазой является Q-фаза (соединение CuAl2). В сплавах системы Al-Mg-Si, избыточной фазой является Mg2Si. Высокую прочность и пластичность термически упрочняемые алюминиевые сплавы приобретают в результате закалки и последующего естественного или искусственного старения. Прочность сплавов после закалки и старения увеличивается по мере усложнения состава упрочняющей фазы. Выделение только Q фазы в сплавах Al-Cu приводит к сравнительно небольшому упрочнению. В результате закалки и старения в двойных Al-Cu сплавах удается получить sв» 300-350 МПа. В дуралюмине Д1, где наряду с Q фазой, упрочняющей является и Sфаза, предел прочности повышается до 420-440 МПа.
В дуралюмине Д16, где основной упрочняющей фазой является S фаза, а роль Q-фазы невелика, упрочнение достигает значений sв> 450 МПа. Выделение упрочняющей T-фазы в высокопрочных алюминиевых сплавах типа В95 приводит к повышению sв до 600 МПа при d> 12%.
Сплавы системы Al-Cu-Mg (дуралюмины) относятся к группе термически упрочняемых деформируемых сплавов. Они отличаются высокой прочностью в сочетании с высокой пластичностью, имеют повышенную жаропрочность, поэтому они применяются для работы при повышенных температурах. Дуралюмины склонны к образованию кристаллизационных трещин и поэтому относятся к категории несваривающихся плавлением сплавов, а также имеют пониженную коррозионную стойкость.
Классическим дуралюмином является сплав Д1. Сплав Д16 считается дуралюмином повышенной прочности. Сплавы Д19, ВАД1 и ВД17 являются дуралюминами повышенной жаропрочности, а Д18, В65 с пониженным содержанием легирующих компонентов являются сплавами повышенной пластичности (таблица 5).